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ABSTRACT

A key problem for effective unit testing is the difficulty of
partitioning large software systems into appropriate units
that can be tested in isolation. We present an approach that
identifies control and data inter-dependencies between soft-
ware components using static program analysis, and divides
the source code into units where highly-intertwined compo-
nents are grouped together. Those units can then be tested
in isolation using automated test generation techniques and
tools, such as dynamic software model checkers. We dis-
cuss preliminary experimental results showing that auto-
matic software partitioning can significantly increase test
coverage without generating too many false alarms caused
by unrealistic inputs being injected at interfaces between
units.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Verification, Algorithms, Reliability

Keywords

Software Testing and Model Checking, Compositional Anal-
ysis, Interfaces, Program Verification

1. INTRODUCTION

Today, testing is the primary way to check the correctness
of software. Correctness is even more important to deter-
mine in the case of embedded software, where reliability and
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security are often key features. Billions of dollars are spent
every year on testing in the software industry as a whole as
testing usually accounts for about 50% of the cost of soft-
ware development [29]. Yet software failures are numerous
and their cost to the world’s economy can also be counted
in billions of dollars [31].

An approach (among others) that has potential to sig-
nificantly improve on the current state of the art consists
of automatically generating test inputs from a static or dy-
namic program analysis in order to force program executions
towards specific code statements. Automated test genera-
tion from program analysis is an old idea (e.g., [25, 29, 26,
13]), which arguably has had a limited practical impact so
far, perhaps due to the lack of usable, industrial-strength
tools implementing this approach. Recently, there has been
a renewed interest for automated test generation (e.g., [6,
5, 36, 11, 17, 10]). This renewed interest can perhaps be
attributed to recent progress on software model checking,
efficient theorem proving, static analysis and symbolic exe-
cution technology, as well as recent successes in engineering
more practically-usable static-analysis tools (e.g., [9, 20])
and the increasing computational power available on mod-
ern computers.

A new idea in this area is Directed Automated Random
Testing (DART) [17], which fully automates software test-
ing by combining three main techniques: (1) automated ex-
traction of the interface of a program with its external en-
vironment using static source-code parsing; (2) automatic
generation of a test driver for this interface that performs
random testing to simulate the most general environment
the program can operate in; and (3) dynamic analysis of
how the program behaves under random testing and auto-
matic generation of new test inputs that direct the execution
along alternative program paths. DART can detect stan-
dard errors such as program crashes, assertion violations,
and non-termination, and can also be used in conjunction
with complementary run-time checking tools for detecting
memory allocation problems (e.g., [22, 30, 27, 34]). During
testing (Step 3), DART performs a directed search, a vari-
ant of dynamic test generation (e.g., [26, 19]). Starting with
a random input, a DART-instrumented program calculates
during each execution an input vector for the next execution.
This vector contains values that are the solution of symbolic
constraints gathered from predicates in branch statements
during the previous execution. The new input vector at-
tempts to force the execution of the program through a new
path. By repeating this process, a directed search attempts
to force the program to sweep through all its feasible ex-



ecution paths, in a style similar to systematic testing and
dynamic software model checking [15].

When applied to large programs, a directed search is typi-
cally incomplete due to combinatorial explosion and because
of the presence of complex program statements or exter-
nal function calls for which no symbolic constraint can be
generated. It is worth emphasizing that these two limita-
tions — scalability and limited symbolic-reasoning capabil-
ities — are inherent to all automated test-generation tech-
niques and tools, whether static (e.g., [6, 5, 36, 11]) or dy-
namic (e.g., [17, 10]). This explains why automnated test
generation typically cannot achieve 100% code coverage in
practice, independently of how code coverage is defined (e.g.,
coverage of all program statements, branches, paths, etc.).

An idea to alleviate these limitations is to partition a large
program into several smaller units that are then tested in iso-
lation to search for program bugs such as crashes and asser-
tion violations. As an extreme, every function in a program
could be tested one-by-one in isolation using automated test
generation. While this testing strategy can dramatically in-
crease code coverage, automated test generation will also
typically generate lots of unrealistic inputs which in turn
will trigger many unrealistic behaviors and spurious bugs,
i.e., false alarms. This is because function testing ignores
all the dependencies (preconditions implied by the possible
calling contexts) between functions.

In this paper, we investigate how to partition a program
into a set of units such that testing those units in isola-
tion mazximizes overall code coverage while minimizing the
number of false alarms. We propose a two-step heuristic
approach to this problem. First, we perform a light-weight
static source-code analysis to identify the interface of ev-
ery function in a program. Second, we divide the program
into units where highly-intertwined functions are grouped to-
gether, hence hiding complex interfaces inside units. We
have developed a prototype tool implementing these ideas
for the C programming language. We present results of ex-
periments performed on oSIP, an open-source implementa-
tion of the Session Initiation Protocol embedded in many
IP phones. Those experiments show that automatic soft-
ware partitioning using the above simple strategy can signif-
icantly increase test coverage without generating too many
false alarms.

The rest of this paper is organized as follows. We start
in Section 2 with some background definitions and assump-
tions, and define the software partitioning problem in this
context. The two steps of our approach to the partitioning
problem are then discussed in Sections 3 and 4, on inter-
faces and partitioning algorithms respectively. The parti-
tioning algorithms of Section 4 have been implemented in a
prototype tool for partitioning C programs, and results of
experiments are presented in Section 5. Other related work
is discussed in Section 6 and we conclude in Section 7.

2. THE SOFTWARE PARTITIONING
PROBLEM

A program P is defined as a set of functions F associated
with a given function main € F which is always executed
first when running the program. A call graph G over a set of
functions F is a graph G = (V, E) with a set of vertices V =
F and a set of edges E C V x V such that (f,g) € E if there
is a call to function g in function f. By transitive closure,

we say that a function f calls a function g in a call graph
g if there is a sequence o = sg, S1, ..., Sk such that so = f,
and s, = g, and (s;,8:41) € E for ¢ € {0,1,...,k — 1}; the
path from f to g is the sequence o, and its length is k. A
function f directly calls a function g in G if there is a path
from f to g of length 1 in G.

A path o = s0,581,...,8k from f to g lies in a set S if
s; € Stforalli € {0,1,...,k}. A set of functions S is convex
with respect to a function f € S if for every function g in S
called by f, there is a path from f to g that lies in S. Given
a set S of functions, a function f € S is called an entry point
of S if every function g € S is called by f, and S is convex
with respect to f. A wnit u = (S, f) is a set of functions S
with an entry point f.

Given a call graph G over a set of functions F, a partition
P of G is a set of units P = {(So, fo), (S1, f1),---,(Sk, fx)}
such that J{S; | 0 <i <k} =F, and S; NS; = for all
0 < 4,5 < k such that ¢ # j. We assume that the pair (F,
main ) is a unit, i.e., main is an entry point of F. Trivially,
for any function f, ({f}, f) is always a unit.

In order to test program P, automated test generation
techniques and tools can be applied to generate inputs at
the program interface in order to drive its execution along
as many program statements/branches/paths as possible.
However, testing large programs is difficult because of the
limited reasoning capabilities of automated test generation
techniques and expensive because of the prohibitive num-
ber of statements, branches and paths in large programs.
Consequently, viewing the entire program P as a single unit
usually leads to poor code coverage (as will be shown exper-
imentally later) if P is large and non-trivial. Let us call this
form of testing monolithic testing.

On the other hand, automated test generation can also
be applied to all the individual functions f € F of P, one
by one. This strategy can dramatically increase code cov-
erage but automated test generation will typically generate
lots of unrealistic inputs which in turn will trigger many
unrealistic behaviors and hence many false alarms. Indeed,
such a piecemeal testing ignores all the dependencies (pre-
conditions implied by the possible calling contexts) between
functions. For instance, a function f taking as input argu-
ment a pointer to a data structure may assume that this
pointer is always non-null. While this assumption may be
true whenever f is called by some function in F, piecemeal
testing may very well provide a null value for this argument
when calling f, which may lead to a crash if the pointer is
dereferenced inside f. We call such a spurious error a false
alarm.

We define the software partitioning problem as follows:

how to partition a given program P satisfying
the above assumptions into a set of units such
that testing those units in isolation maximizes
code coverage while minimizing the number of
false alarms?

Our definition is intentionally general to accommodate vari-
ous specific ways to measure code coverage or identify /define
false alarms.

In this paper, we investigate a two-step heuristic approach
to the software partitioning problem. First, we propose to
perform a light-weight static source-code analysis to iden-
tify the interface of every function in a program P, which
enables the definition and measurement of the complezity of



those interfaces. Second, we discuss several clustering algo-
rithms which group together functions whose joint interface
is complex, hence hiding that interface inside the resulting
unit. The result is a partition of the program P where highly
intertwined functions are grouped together in units.

The two steps of our approach are discussed in the next
two sections.

3. INTERFACES

In principle, the interface of a function describes all possi-
ble avenues of exchange of information between the function
and its environment: arguments, return values, shared vari-
ables, and calls to other functions. The interface of a unit is
defined as the interface of the composition of the functions
in that unit.

In practice, the precise interface of functions described in
full-fledged programming languages like C or C++ can be
hard to determine statically due to unknown control flow
(e.g., in the presence of function pointers), unbounded data
structures, side-effects through global variables, etc. We
therefore use approximate interface representations.

Control interfaces track control dependencies across func-
tion and unit boundaries. Given a program P defined by a
set F of functions, the boolean control interface C of a unit
u = (S, fs) of Pis a tuple (S,0,7) where O : S x (F\ S)
is a relation mapping every function f € S to the functions
g € F\ S that are directly called by f, and Z: (F\S)x S is
a relation mapping every function g € F\ S to the functions
f € S directly called by g.

By extension, given a program P defined by a set F of
functions, the weighted control interface C, of a unit u =
(S, fs) of Pis atuple (S, Ow, Tw) where Oy, : Sx ((F\S)xN)
is a relation mapping every function f € S to the pairs (g, n)
where g € F\ S is a function directly called by f, and n
is the number of calls to g in the code describing f, and
Zw: (F\S) x (S x N) is a relation mapping every function
g € F\ S to the pairs (f,n) where f € S is a function
directly called by g and n is the number of calls to f in the
code describing g.

Two boolean (weighted) control interfaces C1 = (S1, O1,Z1)
and C2 = (S2, 02,73) are compatible (denoted comp(C1,C2))
if S NSy = 0. Given two compatible boolean control in-
terfaces C1 = (S1,01,7Z1) and C2 = (S2, O2,73), their com-
position (denoted Cy || C2) is the boolean control interface
Ce = (8¢,0¢,Z;) where S. = S1 U S2, O = {(f,9) €
O U (’)2|g S .7:\ (Sl U Sz)} and Z, = {(f7g) IS A U12|f S
F\(S1US2)} (calls from S; and Ss to each other are hidden
by the composition). Similarly, the composition of two com-
patible weighted control interfaces is defined as the weighted
control interface C. = (S¢, O¢,Z:) where S. = Si U Sa,
Oc =A{(f,(g,n)) € O1UO2]lg € F\ (S1U S2)} and Z. =
{(f,(g:n)) €eLLUL|f € F\ (S1US2)}

Richer interface representations can be defined by also
taking into account other features of a function that are
externally visible, such as the number of input arguments,
the type of input arguments and return values for incoming
or outgoing function calls, the sequencing of external calls
made by a function (flow-sensitive interface representation),
etc.

For simplicity, we consider in this work partitioning algo-
rithms that make use of information exposed by control in-
terfaces only. Whether richer interface representations can

Algorithm 1 PartitionCP(S)

Input: A set of control interfaces of a set S of functions
Output: A partition of S into a set U of units
Variables: WeightedGraph G
1: G := PopularityGraph(S)
2: while (= IsEmpty(G)) do
¢ := ChooseCPCutoff(G)
G’ := FilterPopularEdges(G, c)
while (= IsEmpty(G')) do
t := TopLevel(G')
u := Reachable(G’,t)
if (Ju| > 1 or G’ = G) then
add u as a new unit in U
:= RemoveNodes(G, u)
end if
G’ := RemoveNodes(G', u)
end while
end while

—_

—_
—_

lead to significantly better software partitioning is left for
future work.

4. SOFTWARE PARTITIONING
ALGORITHMS

In this section, we present partitioning algorithms that ex-
ploit the definitions of interfaces of the previous section in
order to group together functions (atomic components) that
share interfaces of complexity higher than a given threshold.
Two notions of interface complexity are implicitly consid-
ered here: popularity and collaboration.

4.1 CalleePopularity

If a function f is called by many different caller functions,
then it is likely that any specific calling context in which f
is called is not particularly important. For instance, func-
tions used to store or access values in data structures like
lists or hash tables are likely to be called by several differ-
ent functions. In contrast, functions performing sub-tasks
specific to a given function may be called only once or only
by that function. In the latter case, the caller and the callee
are more likely to obey tacit rules when communicating with
each other, and breaking the interface between them by plac-
ing these functions in different units may be risky.

In what follows, let the popularity of a function f be the
number of functions g that call f. (The popularity of a
function could also be defined as the number of syntactic
calls to that function; we consider here the former, simpler
definition in order to determine if it is already sufficient to
obtain interesting results.)

Formalizing the above intuition, our first algorithm gen-
erates a partition of units in which functions f and g are
more likely to be assigned to the same unit if f calls g and
g is not very popular. Given the set of control interfaces
of a set S of functions, the algorithm starts by invoking the
PopularityGraph subroutine to compute a weighted directed
graph G = (V, E) with the set of nodes V' = S, where the
directed edges in E denote calls between functions in S, and
each edge weight is set to the popularity of the callee (i.e.,
the popularity of the function corresponding to the destina-
tion node of the edge).



Next, as long as the popularity graph G = (V,E) is
not empty, the algorithm proceeds with the following steps.
Given a cutoff policy, it chooses a maximum popularity cut-
off ¢ by invoking the subroutine Choose CPCutoff, and (tem-
porarily) removes edges above that threshold by calling the
subroutine FilterPopularEdges. The resulting subgraph G’
is traversed top-down (or top-down in some spanning tree in
case the subgraph is strongly connected). This traversal is
performed by repeatedly invoking the subroutine TopLevel
which returns a top level node in G = (V', E'): a node v in
V' is said to be a top level node if no other node u exists
in V' such that (u,v) € E’. Note that a (nonempty) di-
rected graph has no top level node if and only if every node
is part of some strongly connected component; in that case
the subroutine TopLevel returns an arbitrary v € V’. For
each top level node t, the set of reachable nodes in G’ from
t is computed by invoking the subroutine Reachable. If this
set of nodes is non-trivial (i.e., larger than one node), this set
of nodes is defined as a unit. Nodes that would form trivial
units (consisting of only themselves) are not allocated at this
stage, but will be allocated at some subsequent iteration of
the outer while loop with a possibly different (higher) pop-
ularity cutoff. Nodes corresponding to functions allocated
to units are removed from G and from the subgraph G’ using
the RemoveNodes subroutine. When the inner while loop
exits, a new iteration of the outer while loop may begin,
and the entire process described above is repeated until all
the functions have been allocated to some unit, at which
point the outer while loop exits, and the algorithm termi-
nates. At that point, every function in S has been allocated
to exactly one unit in the resulting set U of units.

Algorithm 1 uses the following subroutines:

1. The subroutine PopularityGraph takes as input a set
of (boolean) control interfaces of a set of functions S,
and returns a weighted directed graph G = (V, E).
The graph is such that there is a vertex vy € V for
each function f € S, and there is an edge (vy,vy) € E
with weight w for each call from f to g in S, where w
is the popularity of g.

2. The subroutine IsEmpty takes as input a graph G =
(V, E) and returns T'rue if V = ), and False otherwise.

3. The subroutine ChooseCPCutoff takes as input a weigh-
ted directed graph G and returns a value ¢ based on the
cutoff policy. A cutoff policy is an external parameter
to the algorithm. We considered and experimented
with two types of cutoff policies in conjunction with
this algorithm: policy cpn makes ChooseCPCutoff re-
turn the value n on the first invocation and the max-
imum weight in G on subsequent invocations, while
policy cpi makes ChooseCPCutoff return the smallest
weight in G.

4. The subroutine FilterPopularEdges takes as inputs a
weighted directed graph G = (V, E) and a value c. It
returns a weighted directed graph G’ = (V, E’) such
that £’ C E, and for all e € E of weight w, we have
e € E' if and only if w < c.

5. The subroutine TopLevel takes as input a (nonempty)
weighted directed graph G’ = (V', E’) and returns any
node v’ such that there is no v € V' such that (v,v") €
E'. If such a node v’ does not exist (i.e., every node

in G’ is part of some strongly connected component),
then TopLevel(G') returns any v’ € V.

6. The subroutine Reachable takes as inputs a graph G =
(V,E) and a node t € V, and returns the set of nodes
V' C V reachable from ¢ in G.

7. The subroutine RemoveNodes takes a graph G = (V, E)
and a set u C V and returns a graph G’ = (V' E')
such that V' = V \ u, and (V', E’) is the subgraph of
G induced by V.

THEOREM 1. For a call graph G over a set of functions
S and given a set of control interfaces of S, the algorithm
PartitionCP(S) creates a partition of G.

PROOF. We prove (i) that the algorithm terminates, and
(ii) that when it has terminated, (a) every function in S is
allocated to some unit u generated by the algorithm, and
(b) that no function f € S is allocated to two units v and
u’ generated by it.

The subroutine ChooseCPCutoff, for all cutoff policies,
eventually returns the maximum weight in G. Thus, the
condition G = G’ in the if condition in the inner while
loop is satisfied eventually. From that point onwards, at
least one vertex is removed from the graphs G and G’ in
each iteration of the inner while loop. Since the graph G’
is finite, the inner while loop must eventually exit when G’
becomes empty. Also, since the graph G is finite, the outer
while loop must eventually exit when G becomes empty.
Thus, the algorithm terminates.

Since every function in S is a vertex in the popularity
graph G, and since the outer loop runs until the graph G is
empty (has no more vertices), and since a vertex is removed
from G only if it is allocated to a generated unit, it follows
that every function in S is allocated to some unit. For the
part (ii)(b), we observe that, when a function f is allocated
to a unit u (in line 9 of the algorithm), it is next removed
from both G and G’, and thus cannot be allocated to more
than one unit. O

4.2 Shared Code

If two functions f and g call many of the same functions,
then it is likely that the higher-level operations they perform
are functionally more related than with other functions that
call a completely disjoint set of sub-functions. Therefore,
functions that share a lot of sub-functions should perhaps
be grouped in a same unit.

This intuition is formalized by our second partitioning al-
gorithm, which generates a partition of units in which func-
tions f and g are more likely to be assigned to the same
unit if they have a relatively high degree of collaboration,
where the degree of collaboration is the number of common
functions called by both f and g.

Given a set of control interfaces of a set S of functions, the
algorithm first creates a weighted undirected collaboration
graph W = (V,E) with V. =S, and E = (S x S)\ {(/, /) |
f € S} (intuitively, there is an edge between any two dis-
tinct functions), and each edge weight is set to the number
of sub-functions shared between the two functions the edge
connect. Since an approach based on a single cutoff clas-
sifying inter-function collaboration into a boolean “high”
or “low” is too coarse-grained, we instead propose a more
general algorithm based on multiple collaboration thresh-
olds. Given a collaboration classification policy (embodied



Algorithm 2 PartitionSC(S)

Input: A set of control interfaces of a set S of functions
Output: A partition of S into a set U of units
Variables: WeightedGraph W

1: W := CollaborationGraph(S)

2: ¢ := NumberOfCollaborationClasses(G)

3: L := CollaborationThresholds(G, c)

4: while (- IsEmpty(W)) do

5: := max(L)

6: W' := FilterLightEdges(W,t)

7:  while (=IsEmpty(W')) do

8: u := Connected Component(W")

9: if (Ju| > 1 or W/ = W) then

10: add v as a new unit in U

11: W := RemoveNodes(W, u)

end if

12: W' := RemoveNodes(W', u)
end while

13:  L:= L\ {t}

end while

by the NumberOfCollaborationClasses subroutine) denoting
the number c of collaboration classes, the algorithm invokes
the CollaborationThresholds subroutine to compute a set of
¢ collaboration thresholds representing a sequence of mini-
mum collaboration levels the algorithm will run through in
descending order in subsequent iterations of the outer while
loop, and edges representing collaboration levels below the
minimum currently chosen will be (temporarily) removed by
the FilterLightEdges subroutine invoked soon afterwards in
the outer while loop. The outer while loop runs as long
as the current collaboration graph W is not empty. At the
beginning of each iteration, the maximum value ¢ in the cur-
rent list L of collaboration thresholds is found, and passed
to the FilterLightEdges subroutine which returns a subgraph
W' of the collaboration graph W in which only edges with
weights higher than or equal to ¢ remain. As long as the
subgraph W’ is not empty, the inner while loop runs. It
invokes the ConnectedComponent subroutine on W’ to find
a group of nodes u in W' that are all reachable from each
other. If a group of cardinality greater than 1 is found, or if
no edges had been filtered out of W to get W’ in this current
iteration, the newly discovered group of nodes u is allocated
as a new unit, and the nodes in u are removed from both
W and W' using the RemoveNodes subroutine. Otherwise,
the nodes in u are not yet allocated as an unit, and are re-
moved from W’ but not from W; indeed, nodes in u will be
allocated during subsequent iterations of the outer while
loop with lower values of the collaboration threshold. When
W' becomes empty, the inner while loop terminates, the
current collaboration threshold ¢ that was used is discarded
from L, and the next iteration of the outer while loop con-
tinues with the next lower value in L as the new current
collaboration threshold. Eventually, when W is empty, the
outer while loop terminates, and the algorithm terminates.
At that point, every function in S has been allocated to
exactly one unit in the resulting set U of units.
Algorithm 2 uses the following subroutines:

1. The subroutine CollaborationGraph takes as input a
set of (boolean) control interfaces of a set of func-
tions S and creates a weighted undirected graph W =

(V, E). The graph is such that there is a vertex vy € V'
for each function f in S, and an edge (vy,vy) € E of
weight w for every pair of functions f and g in S such
that w is the degree of collaboration between f and g.

2. The subroutine NumberOfCollaborationClasses takes
as input a collaboration graph and returns a positive
integer ¢ based on the collaboration classification pol-
icy; the policy scn forces the subroutine to always re-
turn the value n.

3. The subroutine CollaborationThresholds takes as in-
puts a collaboration graph W and an integer ¢, and
returns a sequence of ¢ distinct non-negative integers
starting from 0 and dividing equally the interval be-
tween 0 and the maximum weight in W.

4. The subroutine FilterLightEdges takes a weighted undi-
rected graph W = (V, E) and returns a graph W' =
(V,E') such that £’ C E, and for all edges e € E of
weight w we have e € E’ if and only if w > c.

5. The subroutines IsEmpty and RemoveNodes are de-
fined as before.

6. The subroutine ConnectedComponent takes as input a
weighted undirected graph W’ = (V, E) and returns a
set u C V of nodes. The set u is such that every pair
of nodes v1,v2 € u are connected in W', and for all
nodes vz € V, if vs ¢ u, then for all v1 € u, v1 and vs
are not connected.

THEOREM 2. For a call graph G over a set of functions
S and given a set of control interfaces of S, the algorithm
PartitionSC(S) creates a partition of G.

PROOF. We prove (i) that the algorithm terminates, and
(ii) that when it has terminated, (a) every function in S is
allocated to some unit u generated by the algorithm, and
(b) that no function f € S is allocated to two units u and
u’ generated by it.

The subroutine CollaborationThresholds returns a list of
integers in which the last element is the maximum weight in
the collaboration graph W. Since one element from that list
is discarded when the inner while loop exits, and since the
inner while loop is guaranteed to exit (since it removes at
least one vertex from the finite graph W' in each iteration
and exits when W' has no more vertices), the last element
of the list L is eventually assigned to ¢ (in line 5). Thus, the
condition W’ = W in the if condition in the inner while
loop is satisfied eventually. From that point onwards, at
least one vertex is removed from the graphs W and W' in
each iteration of the inner while loop. Since the graph W
is finite, the outer while loop must eventually exit when W
becomes empty. Thus, the algorithm terminates.

Since every function in S is a vertex in the collaboration
graph W, and since the outer loop runs until the graph
W is empty, and since a vertex is removed form W only
if it is allocated to a generated unit, it follows that every
function in S is allocated to some unit. For the part (ii)(b),
whenever a function f is allocated to a unit u (in line 10
of the algorithm), it is next removed from both W and W',
and thus cannot be reallocated later to another unit. [

Figure 1 shows a small fragment of the osip call-graph,
chosen for simplicity. The shaded boxes show the partition
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Figure 1: The call-graph, and the partition created
by sc7

Figure 2: The partition created by cpli

created by running sc7 on the graph. On the same graph,
running cpli partitions the functions as shown by Figure 2.
Note that each of the functions in the big fragment have
1 or O callers, whereas oscmp, osnpy, and ocace are more
generic, having multiple callers. Running cp3 partitions the
functions into two groups: {osnpy} and the rest; osnpy is
the only function with more than three callers.

5. EXPERIMENTAL RESULTS

We have implemented the algorithms presented in the pre-
vious section in a prototype tool for partitioning programs
written in C. In order to evaluate the effectiveness of these
algorithms, we applied our tool to a large! software appli-
cation: oSIP, an open-source implementation of the Ses-
sion Initiation Protocol. SIP is a telephony protocol for
call-establishment of multi-media sessions over IP networks
(including “Voice-over-IP”). oSIP is a C library available
at http://www.gnu.org/software/osip/osip.html. The
oSIP library (version 2.2.1) consists of about 30,000 lines
of C code. Two typical applications are SIP clients (such as

'From a unit testing and verification point of view.
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Figure 3: Coverage and incidences of false alarms

softphones to make calls over the internet from a PC) and
servers (to route internet calls). SIP messages are transmit-
ted as ASCII strings and a large part of the oSIP code is
dedicated to parsing SIP messages.

Our experimental setup was as follows. We considered
as our program P a part of the oSIP parser consisting of
the function osip_message_parse and of all the other oSIP
functions called (directly or indirectly) by it. The result-
ing program consists of 55 functions, which are described
by several thousands lines of C code.? The call graph of
this program is actually acyclic, which we believe is fairly
common. (Note that our partitioning algorithms are not
customized to take advantage of this property.) It is worth
observing that the “popularity” (as defined earlier) distri-
bution in this program is far from uniform: about half the
functions (25 out of 55) are very unpopular, being called by
only 1 or 2 callers, about 20 have around 5 callers each, and
the remaining 8 are very popular, with 20 or more callers.

We used an extension of the DART implementation de-
scribed in [17] to perform all our testing experiments. For
each unit, the inputs controlled by DART were the argu-
ments of the unique toplevel function of that unit, and DART
was limited to running a maximum of 1,000 executions (tests)
for testing each unit. In other words, if DART did not find
any error within 1,000 runs while testing a unit, testing
would then move on to the next unit, and so on. Since
the oSIP code does not contain assertions, the search per-
formed by DART was limited to finding segmentation faults
(crashes). Whenever DART triggered such an error, the
testing of the corresponding unit was stopped. Because of
the large number of errors generated by all these experi-
ments (see below), we could not visually inspect each of
those; we therefore assumed that the overall program could
not crash on any of its inputs and hence that all the errors

2The C files containing all these functions represent a total
of 10,500 lines of code.
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found by DART were spurious, i.e., false alarms. Thus, in
this experimental setup, at most one false alarm can be re-
ported per unit. Coverage is defined as branch coverage.
Test coverage while testing a specific unit is defined and
measured with respect to the code (branches) of that unit
only.

We performed experiments with partitions generated by
several partitioning algorithms: the symbol cp1i denotes the
partition generated by both the partitioning algorithm that
uses “callee popularity” iteratively or with a cutoff of 1, as
both partitioning algorithms happened to generate the same
partition for the oSIP code considered here; cp3 represents
the partition generated by “callee popularity” with a cutoff
of 3; and sc7 denotes the partition generated by the “shared
code” partitioning algorithm with a policy value of 7. The
above parameter values were chosen arbitrarily. To calibrate
our results, we also performed experiments with the extreme
partition consisting of a single unit containing all the func-
tions, denoted by big, and with the other extreme partition
where each unit consists of a single function, denoted by
sml. Finally, we also performed experiments with a set of
randomly generated partitions, each denoted by rn where n
is the number of units of the corresponding partition.

Our experimental results are shown in a series of figures.
Figure 3 shows for each partition, the coverage obtained
for each unit in the partition, and whether a false alarm
was reported for that unit. A (blue) x mark indicates no
false alarm was reported (i.e., the unit could be successfully
tested 1,000 times with different inputs), while a (black)
+ mark indicates that DART reported a false alarm (i.e.,
found a way to crash the unit within a 1,000 runs). (Thus,
for n units, there are n marks on the corresponding column,
but some of these are superposed and not distinguishable.)
All those experiments took about one day of runtime on a
Pentium III 800Mhz processor running Linux. Note the low
coverage of 1% in big; this indicates that monolithic testing
is severely ineffective. Also from this figure (and subsequent
figures), it can be seen that the increase in coverage in the
units of partitions to the right (which contain more units)
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Figure 5: Number of false alarms

is not free of cost since it also yields more false alarms.

For each partition considered, Figure 4 shows the over-
all branch coverage obtained after testing all the units in
the corresponding partition. As is clear from Figure 4, the
branch coverage in a partition tends to increase as the num-
ber of units in the partition rises and the average size of each
unit in the partition gets smaller. At the extremes, coverage
rises from about 1% in big to about 27% in sml.

These perhaps seemingly low coverage numbers can be ex-
plained as follows: the total number of program branches is
large (1,162), not all the branches are executable in general
or in our specific experimental setup —for instance, we do
not inject errors for calls to malloc, free, etc. so branches
that are executed in case of errors to calls to these functions
are not executable—, testing of a unit stops as soon as an
error is found or after 1,000 tests have been run, and finally,
whenever DART cannot reason symbolically about some in-
put constraint, it reduces to random testing [17] and random
testing is known to usually yield very low code coverage [32,
17].

Note that the increase from big to sml is not monotonic:
there are peaks corresponding to each of our partitioning
algorithms cp3, cpli and sc7. Thus, even though overall
coverage rises as the number of units in the partition in-
creases, our partitioning algorithms are able to select the
units cleverly enough to raise the inter-unit cohesion suffi-
ciently to consistently beat the overall coverage obtained by
random partitions with similar numbers of units.

From Figure 4 it is clear that coverage on the whole rises
as the number of units in a partition increases, and that
sml is the best partition with respect to coverage. However,
this higher coverage is obtained at the cost of an increased
number of false alarms, as can be seen from Figure 5, which
gives the absolute number of false alarms found for each
partition.

We thus have a tension between two competing objec-
tives: maximizing overall test coverage while minimizing the
number of false alarms. In order to evaluate how the dif-
ferent partitioning algorithms satisfy these two competing
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objectives, Figure 6 shows the ratio of the overall coverage
obtained with a partition divided by the number of false
alarms reported for the partition. (The value of this ratio is
undefined for big as it has zero false alarms; however, big
is not a serious contender for the title of best partitioning
scheme as it leads to very low code coverage.) Observe that
cp3, cpli, and sc7 each correspond to clear peaks in the
graph, although of steadily decreasing magnitude, indicat-
ing that cp3 is the best suited partitioning scheme among
those considered for the specific code under analysis. These
peaks mean that all three algorithms clearly beat neighbor-
ing random partitions, even though these three algorithms
exploit only simple control interface definitions ignoring all
data dependencies. Whether using more elaborate interface
definitions like those discussed in Section 3 can significantly
improve those results is left for future work.

6. DISCUSSION AND OTHER RELATED
WORK

Interfaces are defined in the previous sections as syntactic
notions, which are computable via static analysis, and the
complexity of interfaces is then used as a heuristic measure
of how intertwined functions are. However, an ideal software
partitioning algorithm would cut apart a function f calling
another function g only if any input of g is wvalid, i.e., does
not trigger a false alarm. For instance, if function g takes
as input a boolean value, it is very likely that both 0 and
1 are valid inputs. In contrast, if g takes as argument a
pointer or a complex data structure, its inputs are likely to
be constrained (e.g., g may assume that an input pointer is
non-null, or that the elements of its input array are sorted):
g assumes that all its inputs satisfy a precondition.

Unfortunately, inferring preconditions automatically from
program analysis (dubbed the constraint inference problem
in [16]) is obviously as hard as program verification itself.
Another strategy would be to perform piecemeal testing (see
Section 2), then hide interfaces where false alarms were gen-
erated, and repeat the process until all false alarms have

been eliminated. This strategy looks problematic in practice
because it would require the user to examine all the errors
generated to determine whether they are spurious or not,
the number of iterations before reaching the optimum could
be large, and the partition resulting from this process may
often end up being the entire system, that is, no partition
at all. Another impractical solution would be to generate
and evaluate all possible partitions to determine which one
is best. All these practical considerations explain why we
seek in this work easily-computable syntactic heuristics that
can generate an almost optimal partition at a cheap cost.

In spirit, our work is closest to work on automatically de-
composing hardware combinatorial and sequential circuits
into smaller pieces for compositional circuit synthesis, opti-
mization, layout and automatic test-pattern generation (e.g.,
12, 33]). Circuit topology has also been exploited for defin-
ing heuristics for BDD variable orderings and for finding
upper bounds on the sizes of BDD representations of com-
binatorial circuits (e.g., [4, 28]). However, the components,
interfaces and clustering algorithms used for hardware de-
composition are fairly different from those discussed in this
paper. Indeed, a digital hardware component is always finite
state and its interface to the rest of the world is simply a set
of pins (booleans). In contrast, defining exactly what the
interface of a software component (say a C program) is al-
ready challenging (the flow of control between functions can
be hard to determine, functions may take unbounded data
structures as inputs, side-effects through global variables are
possible and sometimes hard to predict, etc.), and program
verification for Turing-expressive languages is in general un-
decidable due to their possibly infinite state spaces.

Our work is also related to metrics for defining software
complexity, such as function points (e.g., [14]) among others,
and to work on software architecture reconstruction (e.g., [35])
that aim to facilitate the understanding of legacy code for
reuse and refactoring purposes. Work on code reuse usu-
ally consider more sophisticated notions of “components”
and “interfaces”, which are often obtained through a com-
bination of static, dynamic and manual analyses, but do
not attempt to automatically partition code for facilitating
a subsequent more precise automated program analysis.

Software partitioning for effective unit testing is related to
compositional verification, which has been extensively dis-
cussed in the context of the verification of concurrent reac-
tive systems in particular (e.g., see [18, 7, 1]). Composi-
tional verification requires the user to identify components
that can be verified in isolation and whose abstractions are
then checked together. To the best of our knowledge, we
are not aware of any work on heuristics for automatic soft-
ware partitioning with the goal of compositional verification.
The software partitioning heuristics presented in this work
could also be used for suggesting good candidates of units
suitable for compositional verification. However, it is worth
emphasizing that the focus of this work has been (so far) the
decomposition of sequential programs described by a set of
functions, whose behaviors are typically more amenable to
compositional reasoning than those of concurrent reactive
systems, where compositional analysis (testing or verifica-
tion) is arguably more challenging.

Algorithms for inter-procedural static analysis (e.g., [24,
9, 20]) and pushdown model checking (e.g., [8, 2]) are also
compositional, in the sense that they can be viewed as an-
alyzing individual functions in isolation, summarizing the
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results of these analyses, and then using those summaries
to perform a global analysis across function boundaries. In
contrast, the software partitioning techniques we describe
in this paper are more light-weight since they provide only
heuristics based on an analysis of function interfaces only
(not the full function code), and since no summarization of
unit testing nor any global analysis is performed. Software
partitioning could actually be used to first decompose a very
large program into units, which could then be analyzed in-
dividually using a more precise inter-procedural static anal-
ysis (since a single unit may contain more than one func-
tion). However, evaluating the effectiveness of a partitioning
scheme when used in conjunction with static analysis tools
(including static software model checkers like SLAM [3] or
BLAST [23], for instance) would have to be done differently
than in this paper since (1) static analysis usually performs a
for-all path analysis and hence does not measure code cover-
age as is done during testing, and (2) static analysis reports
(typically many) false alarms due to abstraction and the
imprecision that it always introduces, in addition to false
alarms simply due to missing environment assumptions as
with testing. Another interesting problem for future work
(first suggested in [16]) is how to perform automatic dy-
namic test generation compositionally using a summariza-
tion process similar to what is done in inter-procedural static
analysis.

Finally note that, although we used a DART implementa-
tion to perform the experiments reported in the previous sec-
tion, the software partitioning problem and the techniques
that we proposed to address it are independent of any par-
ticular automated test generation framework. We refer the
reader to [17, 16] for a detailed discussion on other auto-
mated test generation techniques and tools.

7. CONCLUSION

We studied in this paper how to automatically partition
a large software program into smaller units that can be
tested in isolation using automated test generation tech-
niques without generating (too many) false alarms due to
unrealistic inputs being injected at unit interfaces exposed
by the partitioning. We proposed an approach that identifies
control and data inter-dependencies between program func-
tions using static analysis, and divides the source code into
units where highly-intertwined functions are grouped to-
gether. We presented several partitioning algorithms based
on this idea.

Preliminary experiments show that, perhaps surprisingly,
even partitioning algorithms exploiting only simple control
dependencies can already significantly increase test coverage
without gemerating too many false alarms. These experi-
ments also seem to validate the intuition behind these al-
gorithms, namely that grouping together highly-intertwined
functions in the same unit improves the effectiveness of test-
ing, since those algorithms are able to consistently beat ran-
dom partitions with similar numbers of units for our bench-
mark.

More experiments are needed to confirm these observa-
tions. Also we do not claim that our specific partitioning
algorithms are the best possible: we have only shown that
there exist some simple partitioning algorithms that can beat
random partitions, but other partitioning algorithms (and
parameter values) should be experimented with. Whether

using more elaborate interface definitions like those discussed
in Section 3 can improve those results is also left to be in-
vestigated.

Still, we believe our preliminary results are an encourag-
ing first step towards defining light-weight heuristics to par-
tition large software applications into smaller units that are
amenable to (otherwise intractable) more precise analyses,
such as dynamic software model checking.

Acknowledgements

We thank Nils Klarlund for helpful comments on preliminary
ideas that led to this work. This work was funded in part
by NSF CCR-0341658.

8. REFERENCES

[1] L. Alfaro and T. A. Henzinger. Interface Theories for
Component-Based Design. In Proceedings of the 1st
International Workshop on Embedded Software
(EMSOFT), pages 148-165. Springer-Verlag, Tahoe
City, October 2001.

[2] R. Alur, M. Benedikt, K. Etessami, P. Godefroid,

T. Reps, and M. Yannakakis. Analysis of Recursive
State Machines. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(4):786-818,
July 2005.

[3] T. Ball and S. Rajamani. The SLAM Toolkit. In
Proceedings of the 13th Conference on Computer
Aided Verification (CAV), volume 2102 of Lecture
Notes in Computer Science, pages 260—264,
Springer-Verlag, Paris, July 2001.

[4] C. L. Berman. Circuit Width, Register Allocation and
Ordered Binary Decision Diagrams. IEEFE
Transactions on Computer-Aided Design,
10(8):1059-1066, August 1991.

[5] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. Generating Test from
Counterexamples. In Proceedings of the 26th
International Conference on Software Engineering
(ICSE). ACM Press, Edinburgh, May 2004.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In
Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA), pages 123-133, ACM Press, Rome, July
2002.

[7] T. Bultan, J. Fischer, and R. Gerber. Compositional
Verification by Model Checking for
Counter-Examples. In Proceedings of the 1996 ACM
SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ), pages 224-238. ACM
Press, San Diego, January 1996.

[8] O. Burkart and B. Steffen. Model Checking for
Context-Free Processes. In Proceedings of the 3rd
International Conference on Concurrency Theory
(CONCUR), pages 123-137, Springer-Verlag, Stony
Brook, August 1992.

[9] W. Bush, J. Pincus, and D. Sielaff. A static analyzer
for finding dynamic programming errors. Software
Practice and Ezperience, 30(7):775-802, 2000.

[10] C. Cadar and D. Engler. Execution Generated Test
Cases: How to Make Systems Code Crash Itself. In
Proceedings of the 12th International SPIN Workshop



(11]

(12]

(13]

(14]

(15]

(16]

(21]

on Model Checking of Software (SPIN), volume 3639
of Lecture Notes in Computer Science, pages 2—23,
Springer-Verlag. San Francisco, August 2005.

C. Csallner and Y. Smaragdakis. Check’n Crash:
Combining Static Checking and Testing. In
Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 422431, ACM
Press, St. Louis, May 2005.

S. R. Das, W.-.-B. Jone, A. R. Nayak, and I. Choi. On
Testing of Sequential Machines Using Circuit
Decomposition and Stochastic Modeling. IEEE
Transactions on Systems, Man, and Cybernetics,
25(3):489-504, March 1995.

J. Edvardsson. A Survey on Automatic Test Data
Generation. In Proceedings of the 2nd Conference on
Computer Science and Engineering, pages 21-28,
Linkoping, October 1999.

S. Furey. Why We Should Use Function Points. IEEE
Software, 14(2), 1997.

P. Godefroid. Model Checking for Programming
Languages using VeriSoft. In Proceedings of the 24th
ACM Symposium on Principles of Programming
Languages (POPL), pages 174-186, ACM Press, Paris,
January 1997.

P. Godefroid and N. Klarlund. Software Model
Checking: Searching for Computations in the Abstract
or the Concrete (Invited Paper). In Proceedings of 5th
International Conference on Integrated Formal
Methods (IFM), volume 3771 of Lecture Notes in
Computer Science, pages 20-32, Springer-Verlag,
Eindhoven, November 2005.

P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In Proceedings
of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation
(PLDI), pages 213-223, ACM Press, Chicago, June
2005.

O. Grumberg and D. E. Long. Model Checking and
Modular Verification. ACM Transactions on
Programming Languages and Systems (TOPLAS),
16(3):843-871, 1994.

N. Gupta, A. P. Mathur, and M. L. Soffa. Generating
test data for branch coverage. In Proceedings of the
15th IEEE International Conference on Automated
Software Engineering (ASE), pages 219-227, IEEE
Computer Society Press, Grenoble, September 2000.
S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System
and Language for Building System-Specific Static
Analyses. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation (PLDI), pages 69-82, ACM Press,
Berlin, June 2002.

S. Hassoun and C. McCreary. Regularity Extraction
via Clan-Based Structural Circuit Decomposition. In
Proceedings of the 1999 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD),
pages 414-419, ACM Press, San Jose, November 1999.

[36]

(22]

23]

24]

(25]

(26]

34]
(35]

R. Hastings and B. Joyce. Purify: Fast Detection of
Memory Leaks and Access Errors. In Proceedings of
the USENIX Winter 1992 Technical Conference, pages
125-138, Berkeley, January 1992.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy Abstraction. In Proceedings of the 29th ACM
Symposium on Principles of Programming Languages
(POPL), pages 5870, ACM Press, Portland, January
2002.

S. Horwitz, T. Reps, and M. Sagiv. Demand
interprocedural dataflow analysis. In Proceedings of
the 8rd ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), pages
104-115, ACM Press, New York, October 1995.

J. C. King. Symbolic Execution and Program Testing.
Journal of the ACM, 19(7):385-394, 1976.

B. Korel. A dynamic Approach of Test Data
Generation. In IEEE Conference on Software
Maintenance, pages 311-317, IEEE Computer Society
Press, San Diego, November 1990.

E. Larson and T. Austin. High Coverage Detection of
Input-Related Security Faults. In Proceedings of 12th
USENIX Security Symposium, Washington D.C.,
August 2003.

K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

G. J. Myers. The Art of Software Testing. Wiley, 1979.
G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-Safe Retrofitting of Legacy Code. In Proceedings
of the 29th ACM Symposium on Principles of
Programming Languages (POPL), pages 128-139,
ACM Press, Portland, January 2002.

The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and
Technology, Planning Report 02-3, May 2002.

J. Offutt and J. Hayes. A Semantic Model of Program
Faults. In Proceedings of the 1996 ACM SIGSOFT
International Symposium on Software Testing and
Analysis (ISSTA), pages 195-200, ACM Press, San
Diego, January 1996.

M. R. Prasad, P. Chong, and K. Keutzer. Why is
ATPG easy? In Proceedings of the 36th Design
Automation Conference (DAC), pages 22-28, ACM
Press, New Orleans, June 1999.

Valgrind. web page: http://valgrind.org/.

A. van Deursen, C. Hofmeister, R. Koschke,

L. Moonen, and C. Riva. Symphony: View-Driven
Software Architecture Reconstruction. In Proceedings
of the 4th IEEE/IFIP Working Conference on
Software Architecture (WICSA). IEEE Computer
Society Press, Oslo, June 2004.

W. Visser, C. Pasareanu, and S. Khurshid. Test Input Gen-
eration with Java PathFinder. In Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA), ACM Press, Boston, July 2004.



