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Abstract. We present a framework for reasoning about abstract open

systems. Open systems, also called \reactive systems" or \modules",

are systems that interact with their environment and whose behaviors

depend on these interactions. Embedded software is a typical example

of open system. Module checking [KV96] is a veri�cation technique for

checking whether an open system satis�es a temporal property no matter

what its environment does. Module checking makes it possible to check

adversarial properties of the \game" played by the open system with its

environment (such as \is there a winning strategy for a malicious agent

trying to intrude a secure system?"). We study how module checking

can be extended to reason about 3-valued abstractions of open systems

in such a way that both proofs and counter-examples obtained by verify-

ing arbitrary properties on such abstractions are guaranteed to be sound,

i.e., to carry over to the concrete system. We also introduce a new veri-

�cation technique, called generalized module checking, that can improve

the precision of module checking. The modeling framework and veri�-

cation techniques developed in this paper can be used to represent and

reason about abstractions automatically generated from a static analy-

sis of an open program using abstraction techniques such as predicate

abstraction. This application is illustrated with an example of open pro-

gram and property that cannot be veri�ed by current abstraction-based

veri�cation tools.

1 Introduction

Software veri�cation via automatic abstraction and model checking is currently

an active area of research (e.g., [BR01,CDH

+

00,DD01,HJMS02,VHBP00]). This

approach consists of automatically extracting a model out of a program by stat-

ically analyzing its code, and then of analyzing this model using model-checking

techniques. If the model-checking results are inconclusive due to too much infor-

mation being lost in the current abstraction, the model can then be automati-

cally re�ned into a more detailed one provided the abstraction process can be

parameterized and adjusted dynamically guided by the veri�cation needs, as is

the case with predicate abstraction [GS97] for instance. Current frameworks and

tools that follow the above paradigm typically use traditional formalisms (such

as Kripke structures or Labeled Transition Systems) for representing models,

while the soundness of their analysis is based on using a simulation relation for



relating the abstract model to the concrete program being analyzed. Two well-

known drawbacks of these design choices are that the scope of veri�cation is then

limited to universal properties, and that counter-examples are generally unsound

since abstraction usually introduces unrealistic behaviors that may yield spuri-

ous errors being reported when analyzing the model. In practice, the second

limitation is perhaps more severe since the relative popularity of model checking

(especially in industry) is due to its ability to detect errors that would be very

hard to �nd otherwise, and not so much to its ability to prove \correctness".

Recently [GJ02,GHJ01,HJS01,BG00,BG99], it was shown how automatic ab-

straction can be performed to verify arbitrary formulas of the propositional �-

calculus [Koz83] in such a way that both correctness proofs and counter-examples

are guaranteed to be sound. The key to make this possible is to represent abstract

systems using richer models that distinguish properties that are true, false and

unknown of the concrete system. Reasoning about such systems thus requires 3-

valued temporal logics [BG99], i.e., temporal logics whose formulas may evaluate

to true, false or ? (\unknown") on a given model. Then, by using an automatic

abstraction process that generates by construction an abstract model which is

less complete than the concrete system with respect to a completeness preorder

logically characterized by 3-valued temporal logic, every temporal property �

that evaluates to true (resp. false) on the abstract model automatically holds

(resp. does not hold) of the concrete system, hence guaranteeing soundness of

both proofs and counter-examples. In case � evaluates to ? on the model, a more

precise veri�cation technique called generalized model checking [BG00,GJ02] can

be used to check whether there exist concretizations of the abstract model that

satisfy � or violate �; if a negative answer is obtained in either one of these two

tests, � does not hold (resp. holds) of the concrete system. Otherwise, the anal-

ysis is still inconclusive and a more complete (i.e., less abstract) model is then

necessary to provide a de�nite answer concerning this property of the concrete

system. This approach can be used to both prove and refute arbitrary formulas

of the propositional �-calculus.

In this paper, we investigate how the scope of program veri�cation via au-

tomatic abstraction can be extended to deal with programs implementing open

systems. An open system, also called \reactive system" or \module", is a sys-

tem that interacts with its environment and whose behavior depends on this

interaction. Embedded software is a typical example of open system. It has been

argued [KV96] that temporal properties of an open system should be veri�ed

with respect to all possible environments for that system. This problem is known

as the module checking problem [KV96]. Module checking makes it possible to

check adversarial properties of the \game" played by the open system and its

environment (such as \is there a winning strategy for a malicious agent trying

to intrude a secure system?").

We study how module checking can be extended to reason about 3-valued ab-

stractions of open systems in such a way that both proofs and counter-examples

obtained by verifying arbitrary properties of such abstractions are guaranteed

to be sound, i.e., to carry over to the concrete system. We also introduce a new



veri�cation technique, called generalized module checking, that can improve the

precision of module checking. The practical motivation of this paper is thus to

develop a framework for representing and reasoning about abstractions auto-

matically generated from a static analysis of an open program using abstraction

techniques such as predicate abstraction. Our framework is illustrated by an

example of application in Section 6. Note that existing software veri�cation-by-

abstraction frameworks and tools (e.g., [BR01,CDH

+

00,DD01,HJMS02,VHBP00])

do not currently support veri�cation techniques for open programs.

2 Background

2.1 3-Valued Models and Generalized Model Checking

In this section, we recall the main ideas and key notions behind the framework

of [BG99,BG00,GHJ01,HJS01] for reasoning about partially de�ned systems. Ex-

amples of modeling formalisms for representing such systems are partial Kripke

structures (PKS) [BG99], Modal Transition Systems (MTS) [LT88,GHJ01] or

Kripke Modal Transition Systems (KMTS) [HJS01].

De�nition 1. { A KMTS M is a tuple (S; P;

must

�! ;

may

�!; L), where S is a

nonempty �nite set of states, P is a �nite set of atomic propositions,

may

�!�

S � S and

must

�!� S � S are transition relations such that

must

�!�

may

�!, and

L : S�P ! ftrue;?; falseg is an interpretation that associates a truth value

in ftrue;?; falseg with each atomic proposition in P for each state in S.

{ An MTS is a KMTS where P = ;.

{ A PKS is a KMTS where

must

�!=

may

�!.

{ A Kripke structure (KS) is a PKS where 8s 2 S : 8p 2 P : L(s; p) 6=?.

The third value ? (read \unknown") and may-transitions unmatched by must-

transitions are used to model explicitly a loss of information due to abstraction

concerning, respectively, state or transition properties of the concrete system

being modeled. A standard, complete Kripke structure is a special case of KMTS

where

must

�!=

may

�! and L : S � P ! ftrue; falseg, i.e., no proposition takes value

? in any state. It is worth noting that PKSs, MTSs and KMTSs are all equally

expressive (i.e., one can translate any formalism into any other) [GJ03].

In interpreting propositional operators on KMTSs, we use Kleene's strong

3-valued propositional logic [Kle87]. Conjunction ^ in this logic is de�ned as

the function that returns true if both of its arguments are true, false if either

argument is false, and ? otherwise. We de�ne negation : using the function

`comp' that maps true to false, false to true, and ? to ?. Disjunction _ is

de�ned as usual using De Morgan's laws: p _ q = :(:p ^ :q). Note that these

functions give the usual meaning of the propositional operators when applied to

values true and false.

Propositional modal logic (PML) is propositional logic extended with the

modal operator AX (which is read \for all immediate successors"). Formulas of

PML have the following abstract syntax: � ::= p j :� j �

1

^ �

2

j AX�, where



p ranges over P . The following 3-valued semantics generalizes the traditional

2-valued semantics for PML.

De�nition 2. The value of a formula � of 3-valued PML in a state s of a KMTS

M = (S; P;

must

�! ;

may

�!; L), written [(M; s) j= �], is de�ned inductively as follows:

[(M; s) j= p] = L(s; p)

[(M; s) j= :�] = comp([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = [(M; s) j= �

1

] ^ [(M; s) j= �

2

]

[(M; s) j= AX�] =

8

>

<

>

:

true if 8s

0

: s

may

�! s

0

) [(M; s

0

) j= �] = true

false if 9s

0

: s

must

�! s

0

^ [(M; s

0

) j= �] = false

? otherwise

This 3-valued logic can be used to de�ne a preorder on KMTSs that re
ects

their degree of completeness. Let � be the information ordering on truth values,

in which ? � true, ? � false, x � x (for all x 2 ftrue;?; falseg), and x 6� y

otherwise.

De�nition 3 (�). LetM

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) andM

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs. The completeness preorder � is the greatest relation

B � S

A

� S

C

such that (s

a

; s

c

) 2 B implies the following:

{ 8p 2 P : L

A

(s

a

; p) � L

C

(s

c

; p),

{ if s

a

must

�!

A

s

0

a

, there is some s

0

c

2 S

C

such that s

c

must

�!

C

s

0

c

and (s

0

a

; s

0

c

) 2 B,

{ if s

c

may

�!

C

s

0

c

, there is some s

0

a

2 S

A

such that s

a

may

�!

A

s

0

a

and (s

0

a

; s

0

c

) 2 B.

This de�nition allows to abstract M

C

by M

A

by letting truth values of proposi-

tions become ? and by letting must-transitions become may-transitions, but all

may-transitions of M

C

must be preserved in M

A

. We then say that M

A

is more

abstract, or less complete, than M

C

. The inverse of the completeness preorder is

called re�nement preorder in [LT88,HJS01,GHJ01]. Note that relation B reduces

to a simulation relation when applied to MTSs with may-transitions only.

It can be shown that 3-valued PML logically characterizes the completeness

preorder [BG99,HJS01,GHJ01].

Theorem 1. LetM

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) andM

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs such that s

a

2 S

A

and s

c

2 S

C

, and let � be the set of all for-

mulas of 3-valued PML. Then,

s

a

� s

c

i� (8� 2 � : [(M

A

; s

a

) j= �] � [(M

C

; s

c

) j= �]):

In other words, KMTSs that are \more complete" with respect to � have more

de�nite properties with respect to �, i.e., have more properties that are either

true or false. Moreover, any formula � of 3-valued PML that evaluates to true or

false on a KMTS has the same truth value when evaluated on any more complete

structure. This result also holds for PML extended with �xpoint operators, i.e.,

the propositional �-calculus [BG99,BG00].



In [GHJ01], we showed how to adapt the abstraction mappings of [Dam96]

to construct abstractions that are less complete than a given concrete program

with respect to the completeness preorder.

De�nition 4. LetM

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be a (concrete) KMTS. Given

a set S

A

of abstract states and a total

1

abstraction relation on states � � S

C

�S

A

,

we de�ne the (abstract) KMTS M

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) as follows:

{ s

a

must

�!

A

s

0

a

if 8s

c

2 S

C

: s

c

�s

a

) (9s

0

c

2 S

C

: s

0

c

�s

0

a

^ s

c

must

�!

C

s

0

c

);

{ s

a

may

�!

A

s

0

a

if 9s

c

; s

0

c

2 S

C

: s

c

�s

a

^ s

0

c

�s

0

a

^ s

c

may

�!

C

s

0

c

;

{ L

A

(s

a

; p) =

8

<

:

true if 8s

c

: s

c

�s

a

) L

C

(s

c

; p) = true

false if 8s

c

: s

c

�s

a

) L

C

(s

c

; p) = false

? otherwise

The previous de�nition can be used to build abstract KMTSs.

Theorem 2. Given a KMTS M

C

, any KMTS M

A

obtained by applying De�-

nition 4 is such that M

A

�M

C

.

Given a KMTSM

C

, any abstractionM

A

less complete thanM

C

with respect to

the completeness preorder � can be constructed using De�nition 4 by choosing

the inverse of � as B [GHJ01]. When applied to MTSs with may-transitions

only, the above de�nition coincides with traditional \conservative" abstraction.

Building a 3-valued abstraction can be done using existing abstraction techniques

at the same computational cost as building a conservative abstraction [GHJ01].

Since by constructionM

A

�M

C

, any temporal-logic formula � that evaluates

to true (resp. false) on M

A

automatically holds (resp. does not hold) on M

C

.

It is shown in [BG00] that computing [(M

A

; s) j= �] can be reduced to two

traditional (2-valued) model-checking problems on regular fully-de�ned systems

(such as Kripke structures or Labeled Transition Systems), and hence that 3-

valued model-checking for any temporal logic L has the same time and space

complexity as 2-valued model checking for the logic L.

However, as argued in [BG00], the semantics of [(M; s) j= �] returns ? more

often than it should. Consider a KMTSM consisting of a single state s such that

the value of proposition p at s is ? and the value of q at s is true. The formulas

p _ :p and q ^ (p _ :p) are ? at s, although in all complete Kripke structures

more complete than (M; s) both formulas evaluate to true. This problem is not

con�ned to formulas containing subformulas that are tautological or unsatis�-

able. Consider a KMTS M

0

with two states s

0

and s

1

such that p = q = true

in s

0

and p = q = false in s

1

, and with a may-transition from s

0

to s

1

. The

formula AXp^:AXq (which is neither a tautology nor unsatis�able) is ? at s

0

,

yet in all complete structures more complete than (M

0

; s

0

) the formula is false.

This observation is used in [BG00] to de�ne an alternative 3-valued semantics

for temporal logics called the thorough semantics since it does more than the

other semantics to discover whether enough information is present in a KMTS

to give a de�nite answer. Let the completions C(M; s) of a state s of a KMTS

M be the set of all states s

0

of complete Kripke structures M

0

such that s � s

0

.

1

That is, (8s

c

2 S

C

: 9s

a

2 S

A

: s

c

�s

a

) and (8s

a

2 S

A

: 9s

c

2 S

C

: s

c

�s

a

).



Logic MC SAT GMC

Propositional Logic Linear NP-complete NP-complete

PML Linear PSPACE-complete PSPACE-complete

CTL Linear EXPTIME-complete EXPTIME-complete

�-calculus NP\co-NP EXPTIME-complete EXPTIME-complete

LTL PSPACE-complete PSPACE-complete EXPTIME-complete

Fig. 1. Known results on the complexity in the size of the formula for (2-valued and

3-valued) model checking (MC), satis�ability (SAT) and generalized model checking

(GMC).

De�nition 5. Let � be a formula of any two-valued logic for which a satisfaction

relation j= is de�ned on complete Kripke structures. The truth value of � in a

state s of a KMTS M under the thorough interpretation, written [(M; s) j= �]

t

,

is de�ned as follows:

[(M; s) j= �]

t

=

8

<

:

true if (M

0

; s

0

) j= � for all (M

0

; s

0

) in C(M; s)

false if (M

0

; s

0

) 6j= � for all (M

0

; s

0

) in C(M; s)

? otherwise

It is easy to see that, by de�nition, we always have [(M; s) j= �] � [(M; s) j=

�]

t

. In general, interpreting a formula according to the thorough three-valued

semantics is equivalent to solving two instances of the generalized model-checking

problem [BG00].

De�nition 6 (Generalized Model-Checking Problem). Given a state s of

a KMTS M and a formula � of a temporal logic L, does there exist a state s

0

of

a complete Kripke structure M

0

such that s � s

0

and (M

0

; s

0

) j= � ?

This problem is called generalized model-checking since it generalizes both model

checking and satis�ability checking. At one extreme, where M = (fs

0

g; P;

must

�!=

may

�!= f(s

0

; s

0

)g; L) with L(s

0

; p) =? for all p 2 P , all complete Kripke structures

are more complete thanM and the problem reduces to the satis�ability problem.

At the other extreme, where M is complete, only a single structure needs to be

checked and the problem reduces to model checking.

Algorithms and complexity bounds for the generalized model-checking prob-

lem for various temporal logics were presented in [BG00]. In the case of branching-

time temporal logics, generalized model checking has the same complexity in the

size of the formula as satis�ability. In the case of linear-time temporal logic, gen-

eralized model checking is EXPTIME-complete in the size of the formula, i.e.,

harder than both satis�ability and model checking, which are both PSPACE-

complete in the size of the formula for LTL. Figure 1 summarizes the complexity

results of [BG00]. These results show that the complexity in the size of the for-

mula of computing [(M; s) j= �]

t

(GMC) is always higher than that of computing

[(M; s) j= �] (MC).

Regarding the complexity in the size of the model jM j, it is shown in [GJ02]

that generalized model checking can in general require quadratic running time



boil

teacoffee

choose

Fig. 2. Example of open system

in jM j, but that the problem can be solved in time linear in jM j in the case

of (LTL or BTL) persistence properties, i.e., properties recognizable by (word

or tree) automata with a co-B�uchi acceptance condition. Persistence properties

include several important classes of properties of practical interest, such as all

safety properties.

2.2 Module Checking

The framework described in the previous section assumes that the abstract sys-

tem M is closed, i.e., that its behavior is completely determined by the state of

the system. But what if M is an abstraction of an open system?

An open system is a system that interacts with its environment and whose

behavior depends on this interaction. Such systems are also often called reac-

tive. In [KV96], Kupferman and Vardi argued that verifying temporal properties

(especially those speci�ed in branching temporal logics) of open systems must

be handled di�erently than traditional model checking. Their argument is best

illustrated with a simple example. Consider a vending machine M which repeat-

edly boils water, asks the environment to choose between co�ee and tea, and

deterministically serves a drink according to the external choice. This machine

is depicted in Figure 2, where dotted transitions represent transitions taken by

the environment. The machine has four states: boil, choose, co�ee and tea. When

M is in state boil, we know exactly what its possible next states are (namely,

choose and boil). In contrast, when M is in state choose, the set of possible next

states is unknown since it depends on the environment: it could be any subset

of the set fco�ee, teag. To see the di�erence this makes semantically, consider

the property \is it always possible for M to eventually serve tea?", which can

be represented as the CTL formula

2

AGEF tea. If we evaluate this formula on

M viewed as a traditional Kripke structure, thus ignoring whether transitions

are taken by the system or its environment, we obtain [M j= AGEF tea] = true,

since, for every state of M , there exists a path from that state to state tea. In

contrast, if we take into account transitions taken by the environment, the an-

swer should be false since, if the environment decides to always choose co�ee,

the machineM will never serve tea. This observation prompted the introduction

of a variant of the model-checking problem for reasoning about open systems,

called the module checking problem:

2

See [Eme90] for a general introduction to the temporal logics used in this paper.



Given a module (M; s) and a temporal logic formula �, does (M; s)

satisfy � in all possible environments?

Formally, a module is de�ned in [KV96] as a Kripke structure whose set of

states is partitioned into two sets: a set of system states, representing the states

where the system can make transitions (such as the states boil, co�ee and tea in

the example above), and a second set of environment states, where the environ-

ment can make transitions (such as the state choose in the previous example).

Here, we will use an alternative formalization (already suggested in [KV96]) and

represent modules as Modal Transition Systems instead: must-transitions will

model system transitions while may-transitions will model environment transi-

tions. Note that this second formalization is more general since it allows states

from which both system and environment transitions exist. To simplify nota-

tions, we also use a set of atomic propositions and associate with each state a

labeling from every propositions to the set ftrue; falseg.

De�nition 7 (Module). A module is a tuple (S; P;

must

�! ;

may

�!; L), where S is a

nonempty �nite set of states, P is a �nite set of atomic propositions,

may

�!� S�S

and

must

�!� S � S are transition relations such that

must

�!�

may

�!, and L : S � P !

ftrue; falseg is an interpretation that associates a truth value in ftrue; falseg with

each atomic proposition in P for each state in S.

A module is thus modeled as a KMTS where no proposition takes the value ?.

In this context, module checking can then be formally de�ned as follows. Recall

that C(M; s) denotes the set of completions of a KMTS/moduleM (see previous

section): C(M; s) = f(M

0

; s

0

)js � s

0

and M

0

is a KSg.

De�nition 8 (Module Checking). Given a module (M; s) and a temporal

logic formula �, we say that the module (M; s) satis�es �, denoted (M; s) j=

r

�,

if 8(M

0

; s

0

) 2 C(M; s) : (M

0

; s

0

) j= �. Checking whether (M; s) j=

r

� is called the

module-checking problem.

Formalized this way

3

, it is clear that module checking (ModC) is related to gen-

eralized model checking (GMC). In the next section, we study this relationship.

3 Comparing Module Checking and GMC

We �rst consider the case of properties speci�ed in linear temporal logic (LTL) or

in universal branching temporal logics such as 8CTL and 8CTL

�

. In this case,

[KV96] shows that module checking and model checking coincide. Indeed, by

de�nition, an LTL or universal property holds of a model if and only if all paths

in that model satisfy the given (path) property. In the case of a module, module

3

The de�nition of module checking in [KV96] actually requires the transition rela-

tion of any (M

0

; s

0

) in C(M; s) to be total, which has the e�ect of preventing the

environment from blocking the system by refusing to execute any transition; this

assumption is eliminated here to simplify the presentation.



checking can be reduced to checking whether the property holds of the module

when placed in the maximal environment consisting of all possible environment

transitions, which in turns is equivalent to model checking. This implies that

LTL module checking has the same complexity as LTL model checking: it is

PSPACE-complete in the size of the formula and can be done in linear time in

the size of the model (it is also known to be NLOGSPACE-complete in jM j).

In contrast, it is shown in [BG00,GJ02] that GMC for LTL can be more precise

but also more expensive than LTL model checking: GMC for LTL is EXPTIME-

complete in the size of the formula [BG00] and can be done in quadratic time in

the size of the model [GJ02].

In the case of properties speci�ed in branching temporal logics (BTL), thus

including existential quanti�cation, [KV96] shows that the complexity of mod-

ule checking is higher than that of model checking, and is in fact as hard as

satis�ability.

The following theorem states that, in the BTL case, GMC and module check-

ing are interreducible.

Theorem 3. For any branching temporal logic L, the GMC problem and the

module checking problem for L are interreducible in linear time and logarithmic

space.

Proof. Consider a formula � of the logic L and a module (M; s) represented by a KMTS

as de�ned in Section 2.2. We have (M; s) j=

r

� i� 8(M

0

; s

0

) 2 C(M; s) : (M

0

; s

0

) j= �

(by De�nition 8) i� :9(M

0

; s

0

) 2 C(M;s) : (M

0

; s

0

) 6j= �. For any branching temporal

logic, the latter is equivalent to :GMC((M; s);:�) (by De�nition 6). Thus, we have

(M; s) j=

r

� i� GMC((M; s);:�) does not hold. Conversely, GMC((M; s); �) holds i�

(M; s) 6j=

r

:�.

In the BTL setting, generalized model checking and module checking are thus

very closely related. One could even say that they are the \dual" of each other,

in the same sense as the quanti�er 8 is the dual of 9 since 8 = :9:. The previous

theorem also explains why both problems have the same complexity in the case

of BTL. For instance, [KV96] pointed out that the complexity in the size of the

formula of module checking for a BTL L is the same as that of satis�ability for

L, while a similar result was proved independently for GMC in [BG00].

This close correspondence also makes it possible to transfer unmatched re-

sults obtained for one problem to the other. For instance, [KV96] only shows

that module checking for CTL can be done in PTIME in the size of M . Using

the results of [GJ02] concerning the complexity of GMC in the size of M , we

immediately obtain that module checking for CTL can require quadratic run-

ning time in jM j, but that it can be solved in time linear in jM j in the case of

CTL persistence properties, i.e., properties recognizable by tree automata with

a co-B�uchi acceptance condition. Conversely, [GJ02] does not provide a lower

bound on the complexity of GMC in the size of M for BTL persistence prop-

erties. Using the proof of Theorem 2 in [KV96] which states that the program

complexity of CTL and CTL

�

module checking is PTIME-complete, we obtain

that GMC for BTL persistence properties (and hence CTL and CTL

�

in gen-



eral) is PTIME-hard. (Moreover, it is easy to show that this proof carries over

to GMC for LTL, which is thus also PTIME-hard.)

In summary, generalized model checking and module checking are di�erent,

yet related, problems. The former is a framework for reasoning about partially-

speci�ed, i.e., abstract, systems, while the latter is a framework for reasoning

about open systems. It is then natural to ask whether these two techniques could

be combined into a framework for reasoning about abstract open systems. The

rest of this paper investigates this idea.

4 Modeling and Reasoning about Abstract Open Systems

We now discuss how to model abstract open systems. Our goal is to de�ne

a modeling formalism for representing abstractions of programs implementing

open systems. Such abstractions could then be automatically generated from

source code by static analysis tools using abstraction techniques like predicate

abstraction. We thus focus here on a semantic model to represent abstract open

systems, not on a modeling language (with a speci�c syntax).

Combining the ideas of Section 2, an abstract open system can simply be

represented as a KMTS with two distinct types of \unknowns": the third truth

value ? can model loss of information due to abstraction, while may-transitions

unmatched by must-transitions can model uncertainty due to environment tran-

sitions. Formally, an abstract module, or 3-valued module, can be de�ned as

follows.

De�nition 9 (Abstract Module). An abstract module is a KMTS, i.e., a

tuple (S; P;

must

�! ;

may

�!; L) where S is a nonempty �nite set of states, P is a �nite

set of atomic propositions,

may

�!� S�S and

must

�!� S�S are transition relations

such that

must

�!�

may

�!, and L : S � P ! ftrue;?; falseg is an interpretation that

associates a truth value in ftrue;?; falseg with each atomic proposition in P for

each state in S. A module is an abstract module such that 8s 2 S : 8p 2 P :

L(s; p) 6=?. An abstract model is an abstract module such that

must

�!=

may

�!.

It is worth emphasizing that modeling abstract open systems this way does

not restrict expressiveness of either kind of \unknowns" since KMTSs have the

same expressiveness as PKSs and MTSs [GJ03]. In other words, any modeling of

incomplete information using ? can also be done using may-transitions instead,

and vice versa. This implies that it does not matter which of ? ormay-transitions

are used to model abstraction or the environment. What matters is that the two

sources of incomplete information are modeled di�erently, so that they can be

distinguished in the model. Indeed, these two types of partial information are

treated di�erently, as we will see later.

We now turn to the de�nition of abstract module checking, or 3-valued module

checking. For doing so, we �rst need to de�ne the set of possible environments

in which an abstract module can be executed. We formally represent this set as

the set of completions of the abstract module with respect to a preorder �

MTS

,

which we de�ne as follows.



De�nition 10 (�

MTS

). Let M

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) and M

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs. The preorder �

MTS

is the greatest relation B �

S

A

� S

C

such that (s

a

; s

c

) 2 B implies the following:

{ 8p 2 P : L

A

(s

a

; p) = L

C

(s

c

; p),

{ if s

a

must

�!

A

s

0

a

, there is some s

0

c

2 S

C

such that s

c

must

�!

C

s

0

c

and (s

0

a

; s

0

c

) 2 B,

{ if s

c

may

�!

C

s

0

c

, there is some s

0

a

2 S

A

such that s

a

may

�!

A

s

0

a

and (s

0

a

; s

0

c

) 2 B.

The preorder�

MTS

is similar to the completeness preorder on MTSs [LT88], but

is de�ned on KMTSs and leaves truth values of atomic propositions unchanged.

De�nition 10 is also similar to De�nition 3 de�ning � on KMTSs except for

the �rst condition which prevents the re�nement of unknown truth values. Let

C

MTS

((M; s)) = f(M

0

; s

0

)js �

MTS

s

0

and M

0

is a PKSg denote the set of com-

pletions of a module (M; s) with respect to �

MTS

. We can now de�ne abstract

module checking as follows.

De�nition 11 (Abstract Module Checking). Given an abstract module (M; s)

and a temporal logic formula �, computing the value

[(M; s) j=

r

�] =

8

<

:

true if 8(M

0

; s

0

) 2 C

MTS

(M; s) : [(M

0

; s

0

) j= �] = true

false if 9(M

0

; s

0

) 2 C

MTS

(M; s) : [(M

0

; s

0

) j= �] = false

? otherwise

is de�ned as the abstract module checking problem.

The previous de�nition generalizes the de�nition of module checking: when

(M; s) is a concrete module (i.e., a module where no atomic proposition has

the value ? in any state), De�nition 11 coincides with De�nition 8 de�ning

module checking.

Abstract module checking de�nes a new 3-valued logic for reasoning about

abstract modules: its syntax is as usual and its semantics is de�ned by [(M; s) j=

r

�]. The following preorder�

PKS

on KMTSs measures the degree of completeness

of abstract modules with respect to the new semantics derived from abstract

module checking.

De�nition 12 (�

PKS

). Let M

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) and M

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs. The preorder �

PKS

is the greatest relation B �

S

A

� S

C

such that (s

a

; s

c

) 2 B implies the following:

1. 8p 2 P : L

A

(s

a

; p) � L

C

(s

c

; p),

2. if s

a

may

�!

A

s

0

a

, there is some s

0

c

2 S

C

such that s

c

may

�!

C

s

0

c

and (s

0

a

; s

0

c

) 2 B,

3. if s

a

must

�!

A

s

0

a

, there is some s

0

c

2 S

C

such that s

c

must

�!

C

s

0

c

and (s

0

a

; s

0

c

) 2 B,

4. if s

c

may

�!

C

s

0

c

, there is some s

0

a

2 S

A

such that s

a

may

�!

A

s

0

a

and (s

0

a

; s

0

c

) 2 B,

5. if s

c

must

�!

C

s

0

c

, there is some s

0

a

2 S

A

such that s

a

must

�!

A

s

0

a

and (s

0

a

; s

0

c

) 2 B.

The preorder �

PKS

is similar to the completeness preorder on PKSs [BG99],

but is de�ned on KMTSs and requires a bisimulation-like relation on both may

and must transitions. The above de�nition extends De�nition 3 de�ning � on

KMTSs by also requiring conditions (2) and (5). An important property of�

PKS

is the following.



Lemma 1. Let M

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) and M

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs. Given any two states s

a

2 S

A

and s

c

2 S

C

, s

a

�

PKS

s

c

implies

the two following properties:

{ 8(M

0

A

; s

0

a

) 2 C

MTS

(M

A

; s

a

) : 9(M

0

C

; s

0

c

) 2 C

MTS

(M

C

; s

c

) : s

0

a

�

PKS

s

0

c

, and

{ 8(M

0

C

; s

0

c

) 2 C

MTS

(M

C

; s

c

) : 9(M

0

A

; s

0

a

) 2 C

MTS

(M

A

; s

a

) : s

0

a

�

PKS

s

0

c

.

Intuitively, the previous lemma states that, if s

a

�

PKS

s

c

, then the set of \pos-

sible environments" (i.e., C

MTS

) for s

a

and s

c

are equivalent: any environment

of s

a

is a possible environment of s

c

and vice versa. This lemma is useful to

prove our next theorem.

Theorem 4. LetM

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) andM

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be two abstract modules (KMTSs) such that s

a

2 S

A

and s

c

2 S

C

, and let

� be the set of all formulas of 3-valued PML. Then,

s

a

�

PKS

s

c

i� (8� 2 � : [(M

A

; s

a

) j=

r

�] � [(M

C

; s

c

) j=

r

�]):

Proof. Omitted due to space limitations.

The previous theorem thus states that 3-valued PML de�ned with the semantics

[(M; s) j=

r

�] logically characterizes the preorder �

PKS

.

4

This implies that ab-

stract module checking cannot distinguish abstract modules that are equivalent

with respect to the preorder �

PKS

. Another important corollary of this theo-

rem is that, by generating an abstraction (M

A

; s

a

) from (a static analysis of)

a concrete module (M

C

; s

c

) such that s

a

�

PKS

s

c

, we can then both prove and

disprove arbitrary properties of s

c

by doing module checking of its abstraction

s

a

. How to automatically generate abstractions preserving �

PKS

is discussed

with an example later in Section 6.

In the case of LTL, abstract (3-valued) module checking, i.e., computing

[(M; s) j=

r

�], reduces to abstract (3-valued) model checking, i.e., comput-

ing [(M; s) j= �] with M viewed as a PKS where all the may-transitions are

also must-transitions. In the BTL case, 3-valued module checking can be ap-

proximated by 3-valued model checking using the 3-valued semantics on KMTS

de�ned in De�nition 2. Indeed, [(M; s) j= �] = true (respectively false) im-

plies that 8(M

0

; s

0

) 2 C(M; s) : (M

0

; s

0

) j= � (resp., (M

0

; s

0

) 6j= �), which

in turn implies that [(M; s) j=

r

�] = true (resp., false). We thus always have

[(M; s) j= �] � [(M; s) j=

r

�]. Since 3-valued model checking can be done at the

same cost as traditional 2-valued model checking [BG00], computing [(M; s) j= �]

is less computationally expensive than computing [(M; s) j=

r

�] in the BTL case

(see Theorem 3), and can thus be used as a cheaper but less precise partial

algorithm for testing whether [(M; s) j=

r

�] is true or false in that case.

5 Generalized Module Checking

As in the case of 3-valued model checking, precision of 3-valued module checking

can be improved by de�ning a 3-valued thorough semantics, denoted [(M; s) j=

r

4

As in the 2-valued case, this result also holds for the propositional �-calculus.



�]

t

. Let C

PKS

((M; s)) = f(M

0

; s

0

)js �

PKS

s

0

and M

0

is a module g denote the

set of possible (concrete) modules for an abstract module (M; s).

De�nition 13 (Thorough Abstract Module Checking). Given an abstract

module (M; s) and a temporal logic formula �, computing the value

[(M; s) j=

r

�]

t

=

8

<

:

true if (M

0

; s

0

) j=

r

� for all (M

0

; s

0

) in C

PKS

(M; s)

false if (M

0

; s

0

) 6j=

r

� for all (M

0

; s

0

) in C

PKS

(M; s)

? otherwise

is de�ned as the thorough abstract module checking problem.

The next theorem states that thorough abstract module checking is consistent

with abstract module checking.

Theorem 5. For any abstract module (M; s) and temporal logic formula �, we

have [(M; s) j=

r

�] � [(M; s) j=

r

�]

t

.

Proof. By de�nition, [(M; s) j=

r

�] = true implies [(M; s) j=

r

�]

t

= true. Moreover,

[(M; s) j=

r

�] = false implies [(M; s) j=

r

�]

t

= false since 9(M

0

; s

0

) 2 C

MTS

(M; s) :

8(M

00

; s

00

) 2 C

PKS

(M

0

; s

0

) : (M

00

; s

0

) 6j= � implies 8(M

0

; s

0

) 2 C

PKS

(M; s) : 9(M

00

; s

00

) 2

C

MTS

(M

0

; s

0

) : (M

00

; s

0

) 6j= �.

Checking whether [(M; s) j=

r

�]

t

= true can be reduced to solving an instance

of the generalized model checking problem for (M; s) and :� with respect to the

completeness preorder� on KMTSs, because of the two universal quanti�cations

de�ning [(M; s) j=

r

�]

t

= true. In contrast, checking whether [(M; s) j=

r

�]

t

=

false involves an alternation between 9 and 8, and requires solving an instance

of the following problem, which we call generalized module checking.

De�nition 14 (Generalized Module-Checking Problem). Given a state s

of an abstract module M and a formula � of a temporal logic L, does there exist

a state s

0

of a module M

0

such that s �

PKS

s

0

and (M

0

; s

0

) j=

r

� ?

Clearly, generalized module checking (GModC) generalizes both module check-

ing and generalized model checking for any (i.e., BTL or LTL) temporal logic

since it includes both as particular sub-problems. Hence, generalized module

checking is at least as hard as generalized model checking, which is itself harder

than module checking in the LTL case and as hard as module checking in the

BTL case (see Section 3). Is GModC harder than GMC? The next theorem shows

that this is not the case by providing a reduction from GModC to GMC.

Theorem 6. Given any (LTL or BTL) temporal logic L, any instance of the

generalized module checking problem for L can be reduced in linear time and

logarithmic space to an instance of the generalized model checking problem for L.

Proof. (Sketch) Consider a formula � of the logic L and an abstract module (M; s)

represented by a KMTS M = (S; P;

must

�! ;

may

�!; L) as de�ned in Section 4. Without loss

of generality, let us assume that � is in positive form in which negation can apply only to

atomic propositions. We �rst de�ne a PKSM

0

= (S

0

; P

0

;!

0

; L

0

) that simulates exactly



program C() {

x,y= 1,0;

if (read(z) == 0) then {

x,y = 2*f(x),f(y);

x,y = 1,0;

} else

x,y = f(x),f(y);

}

(p=T,q=F)

s
(p=   ,q=   )⊥ ⊥(p=T,q=F)

M

(p=F,q=   )⊥

Fig. 3. Example of open program and abstract module

the may and must transitions of M with an additional proposition p

must

as follows:

S

0

= S � fmust;mayg, P

0

= P [ fp

must

g, !

0

= f((s; x); (s

0

; x

0

))j(s; s

0

) 2

may

�!; x

0

=

must if (s; s

0

) 2

must

�! or x

0

= may otherwiseg, 8(s; x) 2 S

0

: 8p 2 P : L

0

((s; x); p) =

L(s; p), and L

0

((s; x); p

must

) = true if x = must or L

0

((s; x); p

must

) = false otherwise.

Second, we translate the formula � into the formula T (�) de�ned with a set P

0

= P [

fp

must

g of atomic propositions by applying recursively the following rewrite rules: for

all p 2 P , T (p) = p and T (:p) = :p; T (�

1

^�

2

) = T (�

1

)^T (�

2

); T (�

1

_�

2

) = T (�

1

)_

T (�

2

); T (AX�) = AX(T (�)); T (EX�) = EX(p

must

^ T (�)). (Note that the above

rules are for PML; in the case of the mu-calculus, �xpoint operators are left unchanged;

a similar translation exists for LTL). Third, we show that GModC((M; s); �) = true

i� GMC((M

0

; (s;must)); T (�)) = true.

To summarize, GModC has the same complexity as GMC. This implies the fol-

lowing, maybe surprising, corollary: even though computing [(M; s) j=

r

�]

t

(thor-

ough abstract module checking) can be more precise than computing [(M; s) j=

r

�] (abstract module checking), it has the same complexity in the BTL case.

6 Application

The practical motivation for this paper is to provide a framework for verifying

properties of programs implementing open systems using automatic abstraction

techniques such as predicate abstraction.

An example of program implementing an open system is shown on the left of

Figure 3. In this program, x and y denote variables controlled by the program

(system), f denotes some unknown function of the system, while z denotes a

variable controlled by the environment. The notation \x; y = 1; 0" means that

variables x and y are simultaneously assigned to values 1 and 0, respectively.

Imagine we are interested in checking the property \(eventually y is odd)

and (at any time, x is odd or y is even)". From this property, we de�ne two

predicates p : \is x odd?" and q : \is y odd?". Given these two predicates, the

property can be represented by the LTL formula � = 3 q ^ 2(p _ :q).



Logic MC ModC GModC

Propositional Logic Linear Linear NP-complete

PML Linear PSPACE-complete PSPACE-complete

CTL Linear EXPTIME-complete EXPTIME-complete

�-calculus NP\co-NP EXPTIME-complete EXPTIME-complete

LTL PSPACE-complete PSPACE-complete EXPTIME-complete

Fig. 4. Complexity in the size of the formula of model checking (MC), module checking

(ModC), and generalized module checking (GModC).

Using predicate abstraction techniques and predicates p and q, one can au-

tomatically compute an abstract module for this program that satis�es the pre-

order �

PKS

and thus Theorem 4, by construction. An example of such an ab-

stract module (M; s) for this program is shown on the right of Figure 3. The

truth values of atomic propositions p and q is de�ned in each state as indi-

cated in the �gure. Dotted transitions indicate may-transitions unmatched by

must-transitions and represent transitions controlled by the environment. Note

how the unknown function f is modeled using ?, while uncertainty due to the

environment is modeled using may-transitions.

In this example, we have [(M; s) j=

r

�] =?, while [(M; s) j=

r

�]

t

= false. In

other words, using the thorough interpretation and generalized module checking

is needed to obtain a de�nite answer in this case. Indeed, this result is obtained

by proving that, for all possible completions (M

0

; s

0

) such that (M; s) �

PKS

(M

0

; s

0

), there exists an environment of (M

0

; s

0

) (namely the one which forces

the system down the leftmost path) where � is violated. We are not aware of

any decision procedure more e�cient than generalized module checking to prove

automatically that the open program C of Figure 3 violates property �.

5

Finally note how GModC di�er from GMC in the presence ofmay-transitions:

while GModC((M; s); �) = false, we have GMC((M; s); �) =?.

7 Conclusions

We have presented a framework for representing and reasoning about abstract

open systems. Our framework is designed to be used in conjunction with auto-

matic abstraction tools for generating abstractions from static program analysis.

We identi�ed the preorder �

PKS

as the one being logically characterized by the

3-valued semantics derived from the de�nition of module checking of [KV96].

Any abstraction that preserves �

PKS

can then be used to both prove and dis-

prove arbitrary temporal properties of the concrete program. We introduced new

variants of the module checking problem suitable for reasoning about such ab-

stractions, namely abstract, thorough abstract and generalized module checking.

We also studied the complexity of these problems. The complexity of generalized

5

Note that, since GMC for LTL can be reduced to SAT for CTL

�

(using Theorem 23

of [BG00]), the above veri�cation results could be obtained using a SAT solver for

CTL

�

, but at a much higher complexity both in jM j and j�j.



module checking is summarized in the last column of Figure 4. The precision

of generalized module checking was illustrated with an example of program and

property that is beyond the scope of current abstraction-based veri�cation tools.

Note that generating an abstraction (M

A

; s

a

) preserving �

PKS

assumes that

it is possible to determine which transitions of the concrete module (M

C

; s

c

) are

controlled by the system and which transitions are controlled by the environ-

ment. Our framework does not currently support a way to safely approximate

(M

C

; s

c

) in the case this information is unknown (i.e., cannot be determined

exactly by a static analysis). Previous work on alternating re�nement rela-

tions [AHKV98,AH01] provides a way to conservatively abstract a game (like the

one played between a system and its environment) while preserving the existence

of a winning strategy for one of the players. However, such game abstractions

do not preserve the existence of a winning strategy for the other player: they

are conservative in the same sense as a simulation relation de�nes a conservative

abstraction of a system, which can be used for proving universal properties but

not refuting these. An interesting topic for future work is therefore to study how

to combine our framework with techniques for abstracting games with the goal

of designing \3-valued game abstractions" that would preserve winning strate-

gies for both players while allowing abstraction. Such a way, one could extend

the framework developed in this paper to allow sound approximations of the

partitioning between system and environment transitions while preserving the

ability to prove and disprove any temporal property of the interaction of the

system with its environment.
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