
Concurrency at Microsoft – An Exploratory Survey

Patrice Godefroid
Microsoft Research

Redmond, WA 98052

pg@microsoft.com

Nachiappan Nagappan
Microsoft Research

Redmond, WA 98052

nachin@microsoft.com

ABSTRACT

Concurrent programming is gaining significant

prominence in the software industry, especially due to the

advent of multi-core architectures. In this report, we

present the results of a survey deployed inside Microsoft

in January 2007 to assess the state of the practice of

concurrency at Microsoft. Our survey polled 10% of the

Microsoft technical staff and collected data for each of the

three major business units, namely Microsoft platforms

and services division, mobile and embedded devices

division and Microsoft business division. Our major

findings indicate that the use of concurrency is widespread

at Microsoft. Of our 684 respondents, over 60% of our

respondent population had to deal with concurrency issues

frequently (on a monthly basis). The most popular

platforms for concurrent programming inside Microsoft

are Win32 and CLR (Common Language Runtime),

which are equally popular. Also, multi-threading and

message-passing forms of concurrency appear to be

equally pervasive. Concurrency bugs take on average

several days to detect, reproduce, debug and fix. Most of

these bugs are of high severity. Most engineers feel

concurrency issues will be more of an issue going

forward, and would welcome additional help in terms of

language support, libraries, tools, processes and training.

1. INTRODUCTION

Many research papers are published each year on

analyzing concurrent software systems. Yet, most

researchers have little idea of how widespread concurrent

programming actually is in the software industry, and in

what specific forms concurrency is used. Without a better

knowledge of the typical end customer for concurrency

analysis tools (microview) and of the total addressable

market for such tools (macroview), any widespread

technology transfer for such tools is doomed to fail.

There are few external studies that discuss concurrency

related issues presenting a company-wide perspective.

This paper attempts to provide a high-level view of the

use and practice regarding concurrency in a large

company like Microsoft. A primary motivation is to

understand better the types of concurrent programming

currently being used. For instance, what are the most

popular platforms for concurrent programming inside

Microsoft? Are most forms of communication based on

message-passing or multi-threading? This information

may help target the scope of new tools to detect

concurrency bugs. Another motivation is to understand the

current processes and tools used to detect, debug and fix

concurrency bugs. During what phase(s) of software

development are concurrency bugs detected? Finally, we

wanted to get a consensus from the engineers on how hard

they felt concurrency bugs were to fix, their severity, and

collect general suggestions from respondents on how to

better deal with concurrency.

To address those broad questions, we performed a survey

inside Microsoft in January 2007. The purpose of this

short paper is to share with the external research

community some of the key (non-proprietary) insights we

learned by analyzing the results of this survey.

The rest of this report is organized as follows. Section 2

brielfy presents some information about the organization

of the survey we conducted. Section 3 discusses various

forms of concurrency used in Microsoft products, while

Section 4 discusses concurrency bugs. Section 5

concludes with some general comments on future

directions.

2. DESCRIPTION OF THE SURVEY

In order to assess the current state of the art/practice of

concurrency at Microsoft, we conducted an on-line

survey. For this purpose, 10% of all employees belonging

to three primary activities (development, test and program

management) were selected randomly from the employee

database of Microsoft. This set includes managers, leads,

architects, etc. We deployed the survey for a period of 2

weeks. Overall, 684 people responded to the survey.

Before interpreting the survey results, we discuss whether

our respondent population is sufficiently experienced. For

this purpose, we assessed their work experience at

Microsoft (to understand their familiarity with the

Microsoft environment and culture) and their total work

experience. Table 1 presents this data, from which we see

that our sample population comprised people with a

significant level of work experience. The self-reported

average size of the respondent’s team was around 100

employees.

 Min. Max. Mean Std. Dev.

Years of

Experience at

Microsoft

0 23.67 7.33 4.16

Total Years of

Experience

0 48 10.48 7.81

Table 1: Experience of respondent population

3. CONCURRENCY AT

MICROSOFT

In this section, we discuss, at a high level, the various

forms of concurrency used in Microsoft products. Figure 2

shows responses to the question “what form of

concurrency do you deal with in your product?” We

observe that both multi-threading and message passing are

almost equally pervasive in Microsoft. (We expected

multi-threading to strongly dominate message passing, but

this is clearly not the case.) Therefore, tools for concurrent

program analysis should ideally support both multi-

threading and message passing. The other most commonly

type of concurrency reported was “database concurrency”.

Figure 2: Different forms of concurrency in Microsoft

products

Table 2 below presents the reasons why concurrency is

used in Microsoft products. We observe that performance

and responsiveness are the primary drivers. Reliability,

robustness, supporting multiple clients, scalability, and

security are the most common other reasons mentioned by

the respondents.

Performance Responsiveness Modularity Other

56.8% 51.2% 27.4% 8.8%

Table 2: Reasons for concurrency in Microsoft

products

Next, we wanted to assess what concurrency platforms

figure predominantly in Microsoft. Based on previous

focus interviews with members of Windows, Visual

Studio and Windows Live Core, we gave respondents the

options of “Win32, CLR or other”. Their responses are

shown in Table 3.

 Total

Win32 47.1%

CLR 42.5%

Other 10.4%

Table 3: Concurrency platforms in use at Microsoft

We observe that Win32 is slightly more popular than

CLR, but not by much. (We expected Win32 to dominate

CLR more.) Note that 22.1% respondents replied “both

Win32 and CLR”, so the overlap is significant.

4. CONCURRENCY BUGS

An interesting observation from this survey is that about

66% of our respondents deal with concurrency issues in

one form or another. This looks like a sizable part of the

Microsoft population, rather than a small and confined

group of concurrency experts, as we had expected. As a

follow-up, we asked respondents to select how frequently

they detect/debug and fix concurrency bugs. Most

respondents who face concurrency issues deal with them

on a monthly basis (Table 4).

Daily 2.8%

Weekly 13.3%

Monthly 38.2%

Rarely 43.7%

Never 2 %

Table 4: Frequency of facing (detect/debug/fix)

concurrency bugs

This leads us to a discussion on how concurrency bugs are

currently detected. Figure 4 shows how effective various

phases of the development cycles are in detecting

concurrency bugs, according to our respondents. Most

respondents said that they find the majority of

concurrency bugs during system/integration, performance

and ad-hoc testing. Code review also scores relatively

well, while code scanning tools do not. (This is a known

area for improvement for code scanning tools as there are

currently few industrial-strength practically-usable static

analysis tools targeted at detecting concurrency bugs).

Figure 4: Perceived effectiveness of various techniques for concurrency bug detection

Note that the perception does not change if we compare

the developer population and the non-developer

population. (One might have thought that developers

would rank code scanning tools or unit testing as more

effective ways to detect concurrency bugs; that is not the

case).

When asked about how easy or difficult concurrency bugs

were to reproduce, there seems to be a consensus that

most concurrency bugs are hard to reproduce, as shown by

the data in Table 5.

Very hard 19.2%

Hard 53.7%

OK 20.9%

Relatively easy 5.8%

Easy 0.4%

Table 5: Reproducibility issues

The self-assessed average time needed to analyze a

concurrency bug is given in Table 6. It often takes days of

work to analyze a single concurrency bug.

Hours (but less than 1 day) 27.4%

Days (but less than 1 week) 63.4%

Weeks (but less than 1 month) 8.3%

Months 0.9%

Table 6: Time to debug

Most respondents state that on average, concurrency bugs

are of Severity 1 and 2 (see Table 7).

1 - Most severe 25.8%

2 58.7%

3 13.5 %

4 - Least severe 2.0%

Table 7: Average severity of concurrency bugs

Note that the overall time spent by all the respondents of

this survey to debug and fix all their self-reported

concurrency bugs represents thousands of days of work.

5. DISCUSSION

We also asked respondents to select what they thought

was the most common source of concurrency bugs

amongst the possible options of “design”, “coding”, “more

of a design issue and less of a coding issue”, “more of a

coding issue and less of a design issue”, and “an equal

mixture of both”. Most respondents thought that

concurrency bugs were either due to coding issues or a

mixture of design and coding issues.

Going forward, 65% out of 428 concurrency-facing

respondents feel that concurrency issues are going to be

more problematic.

Also, most respondents said they would strongly benefit

from:

• Better tools: debuggers for multithreaded/process

programs, capture/replay tools (to help

reproducibility), static analysis, etc.;

• Better libraries with pre-packaged concurrency

mechanisms/patterns;

• Better compilers (that would automatically take

care of concurrency);

• Better programming languages, designed for

concurrency;

• Better code reviews, guidelines, developer

training, education.

The bottom-line: a lot of improvement is possible in all

those directions, and seems necessary to master the

challenges of concurrency. Furthermore, many of the

current tools used are not well adapted to concurrency.

ACKNOWLEDGEMENTS

We thank several senior engineers in Windows, Windows

Live Core and in Visual Studio for their early feedback

during the preparation of this survey. We also thank Tom

Ball, Andrew Begel, Jim Larus and David Molnar for their

comments on previous versions of this report.

