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Abstra
t. We present a framework for automati
 program abstra
-

tion that 
an be used for model 
he
king any formula of the modal

mu-
al
ulus. Unlike traditional 
onservative abstra
tions whi
h 
an only

prove universal properties, our framework 
an both prove and disprove

any formula in
luding arbitrarily nested path quanti�ers. We dis
uss

algorithms for automati
ally generating an abstra
t Modal Transition

System (MTS) by adapting existing predi
ate and 
artesian abstra
tion

te
hniques. We show that model 
he
king arbitrary formulas using ab-

stra
t MTSs 
an be done at the same 
omputational 
ost as model 
he
k-

ing universal formulas using 
onservative abstra
tions.

1 Introdu
tion

There are essentially two approa
hes for extending the appli
ability of model


he
king to programs written in general-purpose programming languages su
h

as C or Java. The �rst approa
h 
onsists of adapting existing model-
he
king

te
hniques into a form of systemati
 testing that is appli
able to pro
esses ex-

e
uting arbitrary 
ode (e.g., [16℄); although sound, this approa
h is inherently

in
omplete for large systems. The se
ond approa
h 
onsists of automati
ally

extra
ting a model out of a program by a stati
 analysis of its 
ode, and of ana-

lyzing this model using existing model-
he
king te
hniques (e.g., [1, 9℄); although

automati
 abstra
tion 
an be 
omplete, this approa
h is generally unsound sin
e

abstra
tion usually introdu
es unrealisti
 behaviors that may yield to spurious

errors being reported when analyzing the model.

In this paper, we study the latter approa
h and show how automati
 ab-

stra
tion 
an be performed in su
h a way that it yields veri�
ation results whose


ompleteness and soundness 
an be both guaranteed. We also show how au-

tomati
 abstra
tion 
an be applied to 
he
k arbitrary formulas of the modal

mu-
al
ulus [22℄, thus in
luding negation and arbitrarily nested path quanti-

�ers. Maybe surprisingly, both extensions 
an be implemented in 
ombination

with existing abstra
tion te
hniques without in
urring any signi�
ant 
omputa-

tional overhead. Our algorithms 
ould be used to extend the s
ope of existing

tools for (
onservative) automati
 abstra
tion su
h as SLAM [1℄ and Bandera [9℄,

?
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whi
h 
urrently support the veri�
ation of universal properties only [7℄. Our al-

gorithms to 
onstru
t abstra
t transition systems 
an also be used in the 
ontext

of the veri�
ation of arbitrary modal mu-
al
ulus formulas with methods based

on theorem-proving [30℄.

Allowing the spe
i�
ation of arbitrary formulas with nested path quanti�ers

makes it possible to express more elaborate properties of the temporal behav-

ior of a rea
tive program, su
h as \for all possible input values, there exists an

exe
ution path of the system that allows the user to restart the servi
e". Unfor-

tunately, the veri�
ation of su
h properties ne
essitates the relation between the


on
rete program and an abstra
t program to be more 
onstraining than a sim-

ulation relation [26, 25℄. Although bisimulation [28, 27℄ over Labeled Transition

Systems (LTSs) re
e
ts all su
h general properties [18℄, it is persuasively argued

in [24, 23℄ to be ill-suited for our 
ontext: as an equivalen
e relation, it 
on�nes

the 
hoi
e of an abstra
tion to the implementation's equivalen
e 
lass, whi
h is

too limiting to allow for 
ompa
t abstra
tions.

For this reason, we use Modal Transition Systems (MTS) [24, 23℄ for rep-

resenting abstra
t systems in order to allow their spe
i�
ations to be partially

de�ned. MTSs are LTSs with two kinds of transitions, termed may and must

transitions, satisfying the 
onsisten
y 
ondition that every must-transition is

also a may-transition. A MTS 
an be \re�ned" by preserving at least all must-

transitions (and maybe adding some) while eliminating some may-transitions.

Sin
e this re�nement preorder on MTSs preserves all properties expressible in

the modal mu-
al
ulus, we 
an verify any su
h properties on the sour
e (
on-


rete) program by verifying these on any abstra
t MTS that is re�ned by this


on
rete program; 
onversely, if there exists a behavior of the abstra
t MTS that

refutes the property, the existen
e of a refuting behavior of the 
on
rete program

is also immediately guaranteed.

An alternative representation for abstra
t systems is the partial Kripke stru
-

ture [4, 5℄. Partial Kripke stru
tures are Kripke stru
tures whose states are la-

beled with atomi
 propositions that 
an have any of three possible truth values:

true, false or unknown. Partial Kripke stru
tures are 
losely related to MTSs

sin
e the transition relation of a MTS 
an be viewed as a fun
tion asso
iating

ea
h transition with one of three possible values: must-transitions 
orrespond

to the value true, may-transitions that are not must-transition are mapped to

unknown, and absent transitions render false. It 
an be shown that any par-

tial Kripke stru
ture 
an be translated into an equivalent MTS, and vi
e versa.

This 
orresponden
e makes it possible to apply the results of [4, 5℄ (in parti
u-

lar, model-
he
king algorithms and 
omplexity bounds) to the 
ontext of MTSs.

Conversely, the abstra
tion te
hniques developed in this paper 
an be adapted

to the 
ontext of partial Kripke stru
tures.

A 
ru
ial aspe
t of our model-
he
king framework is that it not only per-

mits the abstra
tion of 
omplete programs, but also the re�nement of partially

spe
i�ed abstra
t programs by more 
on
rete abstra
t programs, to adequately

a

ommodate the in
remental pro
ess of building more detailed abstra
tions by

su

essive approximations, as used in SLAM or Bandera for instan
e.



We develop an expressive and 
exible relational 
al
ulus for the sound spe
-

i�
ation of MTSs as abstra
tions. This 
al
ulus adapts the de�nitions of [12, 13℄

to partially spe
i�ed systems and is 
omplete in the sense that it 
an spe
ify ev-

ery re�nement of MTSs. In parti
ular, any abstra
t interpretation of data values

extends to a relational abstra
tion expressible in the 
al
ulus. In this 
al
u-

lus, we spe
ify two standard abstra
tions of abstra
t interpretation [10℄, namely

predi
ate abstra
tion [17, 14, 32℄ and 
artesian abstra
tion [3, 1℄ (also known as

\independent attribute analysis"), and des
ribe their implementations:

{ When applied to may-transition relations only, the spe
i�
ations and imple-

mentations we present 
oin
ide with traditional \
onservative" abstra
tion.

{ We dis
uss how these spe
i�
ations 
an be implemented using standard tools

(automati
 theorem proving for quanti�er-free �rst-order logi
 and BDDs),

ex
ept for the use of Ternary De
ision Diagrams (TDDs) [31℄ for 
arte-

sian abstra
tion. We show that the 
omputational 
ost of 
onstru
ting a

must-transition relation is the same as that of 
onstru
ting a may-transition

relation.

{ We show that our implementations are sound and (relatively) 
omplete

1

with

respe
t to their spe
i�
ations in our 
al
ulus. Moreover, they 
onveniently

model approximations in 
alls to a theorem prover as under-approximations

of must-transitions and over-approximations of may-transitions.

{ We prove that abstra
tion re�nement is in
remental for MTSs built using


artesian abstra
tion.

Predi
ate abstra
tion [17, 14, 32℄ is based on a set of predi
ates, �

def

= f�

1

; : : : ; �

n

g,

typi
ally quanti�er-free formulas of �rst-order logi
 (e.g. (x == y+1) || (x <

y-5)). An abstra
t state is indu
ed by n-ary 
onjun
tions, 
alled monomials,

with ea
h predi
ate �

i


ontributing either �

i

or :�

i

. This abstra
tion identi�es


on
rete states that satisfy the same predi
ates in �.

Given a set of states represented by a formula of quanti�er-free �rst-order

logi
  , the set  

0

of abstra
t may-su

essors states is de�ned as the disjun
tion

of all monomials � su
h that post( )^� is satis�able [17, 14℄.

2

Computing  

0


an

be done using automati
 theorem proving for quanti�er-free formulas, and [14℄

shows how to use a representation based on BDDs [6℄ at a propositional level

to 
ompa
tly represent the 
onstru
tion of  

0

as a disjun
tion of 
onjun
tions.

We 
an 
ompute must-transitions by dualizing, in a logi
al sense, the above


onstru
tion: for  as above, we show that the set of must-su

essors is the

disjun
tion of all monomials � su
h that  ^ ~pre(:�) is unsatis�able.

3

Unfortunately, this approa
h is not in
remental: adding a new predi
ate �

n+1

to � may not yield a re�nement of the abstra
tion, and hen
e the entire abstra
-

tion may need to be re
omputed. This short
oming 
an be eliminated at the

expense of enlarging the abstra
t state spa
e: states are now built as disjun
-

tions of abstra
t states from predi
ate abstra
tion. Using disjun
tions 
an yield

1

Whi
h are perfor
e relative to the 
ompleteness of the underlying theorem prover.

2

post( ) is the set of immediate su

essor states of states satisfying  .

3

~pre(:�) is the weakest pre
ondition of states satisfying :�.



a must-
omponent that is more pre
ise than the one obtained from predi
ate ab-

stra
tion, but 
an also be mu
h more expensive: for n predi
ates, an abstra
tion

using disjun
tions 
an have 2

2

n

states. This tradeo� between 
ost and pre
ision

is dis
ussed in [8℄.

This limitation motivates the next layer of approximation: 
artesian abstra
-

tion, whi
h 
an be used on top of predi
ate abstra
tion in order to approximate

sets of n-tuples by n-tuples of sets. We modify the work of [14℄ to synthesize

abstra
t states and abstra
t may-su

essors for this 
omposite abstra
tion, re-

pla
ing BDDs by TDDs [31℄. Then we 
onstru
t must-transitions by dualizing, in

the logi
al sense, the 
onstru
tion of may-transitions using 
artesian abstra
tion.

We 
omplete this framework with an algorithm for model 
he
king any modal

mu-
al
ulus formula on an abstra
t MTS. Following [4, 5℄, any (three-valued)

model-
he
king problem on MTSs 
an be redu
ed to two traditional (two-valued)

model-
he
king problems on regular LTSs.

The rest of the paper is organized as follows. Se
tion 2 dis
usses ba
kground

material on MTSs. Se
tion 3 formally develops a relational 
al
ulus of abstra
-

tions and proves a basi
 result that permits the methods of analysis of this paper.

In Se
tion 4, we apply these methods to predi
ate and 
artesian abstra
tion and

prove that 
artesian abstra
tion allows for in
remental re�nement. Se
tion 5

dis
usses three-valued model-
he
king for MTSs, and Se
tion 6 
on
ludes.

2 Ba
kground: Abstra
t Modal Transition Systems

MTSs [24, 23℄ are de�ned from labeled transition systems.

De�nition 1 (Labeled transition systems). A labeled transition system

[27℄ (LTS) is a tuple K = (�

K

; A
t;�!), where �

K

is a set of states, A
t

is a set of a
tion symbols, and �! � �

K

� A
t � �

K

is a transition rela-

tion. We 
all K �nitely-bran
hing if for ea
h s 2 �

K

, the set fs

0

2 �

K

j 9� 2

A
t: (s; �; s

0

) 2 �!g is �nite.

A strategy to reason about a 
omplex program represented by an LTS C 
onsists

of (i) generating from C an abstra
t LTS A, (ii) 
he
king whether A satis�es a

behavioral property �, and (iii) transferring those results to the original program

C. For (i) and (iii), standard pra
ti
e [10, 7℄ is to 
onstru
t some A su
h that the

initial states of C and A are related by a simulation.

De�nition 2 (Simulation). A relation � � �

C

� �

A

is a simulation [26℄ i�

for any 
 � a and 
!

�




0

there is some a

0

2 �

A

su
h that a!

�

a

0

and 


0

� a

0

.

The temporal logi
 L

8

whose abstra
t syntax is

� ::= tt j ff j Z j �

1

^ �

2

j �

1

_ �

2

j (8�)� j �Z:� (1)

with � 2 A
t, variables Z 2 Var for the greatest �xed point �Z:�, and usual

semanti
s, expresses universal properties [29℄. We assume here the semanti
s



of (
losed) formulas over LTSs is de�ned as sets of states. For instan
e, the

semanti
s of (8�)� is:

[j (8�)� j℄

def

= fs 2 �

K

j for all s

0

2 �

K

, s!

�

s

0

implies s

0

2 [j � j℄g:

A simulation relation 
 � a ensures that a 2 [j � j℄ (read \a satis�es �") implies


 2 [j � j℄. Thus, we may verify any universal property � 2 L

8

(su
h as \For

all paths, nothing bad will happen") at 
 by (i) 
omputing an abstra
t model

A, (ii) establishing a simulation � satisfying 
 � a, and (iii) verifying � at a.

Unfortunately, a negative 
he
k a 62 [j � j℄ does not imply anything about the

truth or falsity of 
 62 [j � j℄. At most, debugging information obtained from su
h

a negative 
he
k may be used to 
onstru
t a more 
on
rete version of A (a

re�nement), hoping that this more pre
ise model either renders a positive 
he
k

or that re�ned debugging information eventually \applies" to C as well.

In this paper, we argue that a better approa
h 
onsists of using MTSs instead

of LTSs for representing abstra
tions of LTSs.

De�nition 3 (MTS). AMTS [24℄ is a pair K = (K

must

;K

may

), where K

must

=

(�

K

; A
t;!

must

) and K

may

= (�

K

; A
t;!

may

) are LTSs su
h that !

must

�

!

may

.

An LTS is simply a MTS K where K

must

equals K

may

. The intuition behind

the in
lusion above is that transitions that are ne
essarily true (K

must

) are also

possibly true (K

may

). Reasoning about the existen
e of transitions of MTSs 
an

be viewed as reasoning with a three-valued logi
 with truth values true, false,

and unknown [4℄: transitions that are ne
essarily true are true, transitions that

are possibly true but not ne
essarily true are unknown, and transitions that are

not possibly true are false.

De�nition 4 (Re�nement [24℄). An MTS A

1

is a re�nement of an MTS A

2

if there exists a relation � � �

A

1

� �

A

2

su
h that (i) � is a simulation from

A

may

1

to A

may

2

and (ii) � is a simulation from A

must

2

to A

must

1

. In that 
ase, we

also say that A

2

is an abstra
tion of A

1

. We write � for the greatest re�nement

relation between MTSs.

MTSs 
an be used to both verify and refute any property of the full modal

mu-
al
ulus, whi
h is de�ned as follows [22℄:

� ::= tt j Z j :� j �

1

^ �

2

j (9�)� j �Z:� (2)

where � 2 A
t, and Z 2 Var (variable for the least �xed point �Z:�).

De�nition 5 (Semanti
s of modal logi
 [19℄). For a MTS K and any modal

mu-
al
ulus formula �, we de�ne a semanti
s [j � j℄

�

2 P(�

K

) �P(�

K

), where

P(�

K

) is the powerset of �

K

, ordered by set in
lusion, �: Var ! P(�

K

) �

P(�

K

) is an environment, and [j � j℄

ne


�

and [j � j℄

pos

�

are the proje
tion of [j � j℄

�

to its �rst and se
ond 
omponent, respe
tively:

1. [j tt j℄

�

def

= h�

K

; �

K

i;



2. [j :� j℄

�

def

= h�

K

n [j � j℄

pos

�

; �

K

n [j � j℄

ne


�

i;

3. [j �

1

^ �

2

j℄

�

def

= h[j �

1

j℄

ne


�

\ [j �

2

j℄

ne


�

; [j �

1

j℄

pos

�

\ [j �

2

j℄

pos

�

i;

4. [j (9�)� j℄

�

def

= hfs 2 �

K

j for some s

0

, s!

a

must

s

0

and s

0

2 [j � j℄

ne


�

g;

fs 2 �

K

j for some s

0

, s!

a

may

s

0

and s

0

2 [j � j℄

pos

�

gi.

The treatment of negation is due to P. Kelb [20℄ and allows for verifying (s 2

[j � j℄

ne


) and refuting (s 2 [j :� j℄

ne


) property � at state s. For brevity, we did

not present the standard least-�xed point semanti
s of �Z:� (e.g., see [19℄).

Theorem 1 (Soundness and 
onsisten
y of semanti
s [19℄). For any

MTSs, formulas �;  of the modal mu-
al
ulus, and environments �:

1. [j � j℄

ne


�

� [j � j℄

pos

�

;

2. [j � ^ :� j℄

ne


�

= ;; and [j � _ :� j℄

pos

�

= �

K

; that is, the semanti
s is 
onsis-

tent for [j j℄

ne


and \
omplete" for [j j℄

pos

;

3. if 
�a, then a 2 [j � j℄

ne


�

implies 
 2 [j � j℄

ne


�

; and 
 2 [j � j℄

pos

�

implies a 2

[j � j℄

pos

�

; that is, veri�
ation and refutation of � are sound;

4. For LTSs, [j � j℄

ne


�

= [j � j℄

pos

�

and 
orresponds to the standard semanti
s for

labeled transition systems.

The semanti
s [j � j℄

ne


(without negation and �xed points) is the one given

by Larsen [23℄; it produ
es a logi
al 
hara
terization of re�nement for �nitely

bran
hing

4

MTSs [23℄. Sin
e s 62 [j � j℄

pos

i� s 2 [j :� j℄

ne


, this logi
al 
hara
teri-

zation 
an be extended to the full mu-
al
ulus (in
luding negation). We thus ob-

tain that 
�a i� for all � of the modal mu-
al
ulus, [a 2 [j � j℄

ne


) 
 2 [j � j℄

ne


℄.

3 A Relational Cal
ulus for Abstra
t MTSs

In [12℄, abstra
t interpretation frameworks are systemati
ally de�ned through

des
ription relations �:�

C

��

A

with suitable properties. We provide a general


al
ulus for spe
ifying abstra
t MTSs based on su
h relations.

De�nition 6 (Relational abstra
tion). Let A

1

= (A

must

1

; A

may

1

) be an MTS.

Given a set �

A

2

of abstra
t states and a total relation

5

�:�

A

1

��

A

2

, we de�ne

A

2

= (�

A

2

; A
t;

must

�!;

may

�!) as follows:

{ a

2

!

�

must

a

0

2

i� for all a

1

2 �

A

1

with a

1

� a

2

there exists a

0

1

2 �

A

1

su
h that

a

0

1

� a

0

2

and a

1

!

�

must

a

0

1

;

{ a

2

!

�

may

a

0

2

i� there exist a

1

2 �

A

1

and a

0

1

2 �

A

1

su
h that a

1

� a

2

, a

0

1

� a

0

2

,

and a

1

!

�

may

a

0

1

.

This de�nition is a tool to spe
ify abstra
t MTSs. Its two 
omponents are sim-

ilar to the universal abstra
tion �

89

and the (dual) existential abstra
tion �

99

de�ned in [11℄, and to the relations R

89

and R

99

in [12℄.

4

may-
omponents and must-
omponents are �nitely-bran
hing.

5

That is, (8a

1

2 �

A

1

9a

2

2 �

A

2

: a

1

�a

2

) ^ (8a

2

2 �

A

2

9a

1

2 �

A

1

: a

1

�a

2

).



Lemma 1. Given A

1

and A

2

as above, A

2

is a MTS and � is a re�nement.

Totality is a natural 
ondition in appli
ations and De�nition 6 
an express step-

wise abstra
tions, produ
ts, sums, et
; moreover, it translates to other frame-

works| e.g. the one based on Galois 
onne
tions [10℄ | in the manner des
ribed

in [12℄.

The spe
i�
ation in De�nition 6 is also 
omplete: given an MTS A

1

, any

abstra
tion A

2

of A

1

via a total re�nement relation � 
an be 
onstru
ted using

De�nition 6 by 
hoosing � as �. The following example illustrates De�nition 6.

Example 1. Let A

1

be a 
omplete MTS (A

may

1

equals A

must

1

) whose in�nite

state spa
e is given by all possible valuations of three integer variables x, y,

and z. Any state 
 is of the form fx 7! i; y 7! j; z 7! kg, for some integers

i; j; k. Let us assume that transitions of A

1

are those indu
ed by the single

assignment statement x = z, e.g. there is a transition from state 
 above to

state 


0

= fx 7! k; y 7! j; z 7! kg.

The predi
ates �

1

def

= odd(x), �

2

def

= (y > 0), and �

3

def

= (z < 0) indu
e an

equivalen
e relation on the states of A

1

: two states are equivalent if they agree

on all three predi
ates. Let �

A

2

be the set of all sets of equivalen
e 
lasses of

states of A

1

. Therefore, states of A

2

are representable as boolean formulas built

from the �

i

's. By De�nition 6, there is a may-transition from a to a

0

in �

A

2

i�

there are 
 2 a and 


0

2 a

0

su
h that 
 has a transition to 


0

in A

1

. Dually, there

is a must-transition from a to a

0

i�, for all 
 2 a, there exists 


0

2 a

0

su
h that


 has a transition to 


0

in A

1

.

For instan
e, there is (i) a may-transition from the state �

1

^ �

2

^ �

3

to the

states �

1

^ �

2

^�

3

and :�

1

^ �

2

^�

3

; (ii) a must-transition from �

1

^�

2

^ �

3

to

the disjun
tion of monomials (�

1

^ �

2

^ �

3

)_ (:�

1

^ �

2

^ �

3

); but (iii) no must-

transition from �

1

^�

2

^�

3

to any monomial, e.g. �

1

^�

2

^�

3

or :�

1

^�

2

^�

3

.

4 Implementation of Relationally Spe
i�ed MTSs

In this se
tion, we 
onsider in turn predi
ate abstra
tion (also 
alled \boolean

abstra
tion") and 
artesian abstra
tion. When applied to may-transition rela-

tions only, the spe
i�
ations and implementations we present 
oin
ide with tra-

ditional \
onservative" abstra
tions. We implement these spe
i�
ations with

standard tools (automati
 theorem-proving for quanti�er-free �rst-order logi


and BDDs), ex
ept for the use of TDDs. We show that the 
omputational 
ost

of 
onstru
ting a must-transition relation is the same as that of 
onstru
ting a

may-transition relation. We then show that our implementations are sound and


omplete (relatively to the 
ompleteness of the underlying theorem prover) with

respe
t to their spe
i�
ations. Moreover, they 
onveniently model approxima-

tions in 
alls to a theorem prover as under-approximations of must-transitions

and over-approximations of may-transitions. Importantly, we prove that abstra
-

tion re�nement is in
remental for MTSs built using 
artesian abstra
tion.



Notation. For any predi
ate � on a set �

S

of states, for any label � 2 A
t, the

post operator [10℄ and weakest pre
ondition [15℄ are de�ned as

post

�

(�)

def

= fs

0

2 �

S

j 9s 2 �

S

: s j= �; s!

�

s

0

g

~pre

�

(�)

def

= fs 2 �

S

j 8s

0

2 �

S

: s!

�

s

0

implies s

0

j= �g:

These operators satisfy several interesting relationships [10℄. Here we only use

the property that, for any predi
ates �;  on states, post

�

( ) ^ � is satis�able

if and only if  ^ : ~pre

�

(:�) is satis�able.

Methodologi
al assumptions. We assume that an abstra
t program is built by


onverting ea
h program statement from a transformer operating on 
on
rete

states to a transformer operating on abstra
t states, as illustrated in Example 1.

For notational 
onvenien
e, we fo
us in what follows on the abstra
tion of a

single program statement, and hen
e 
onsider MTSs, post, and ~pre without ex-

pli
it a
tion labels. For a given program statement and a quanti�er-free formula

�, we assume that ~pre(�) is quanti�er-free as well. This is the 
ase for usual pro-

gramming language 
onstru
ts [17℄ and enables the use of de
ision pro
edures

as implemented in tools su
h as SVC [14℄.

Predi
ate Abstra
tion. Predi
ate abstra
tion [17, 14, 32℄ 
ollapses an in�nite-

state LTS into a �nite-state MTS de�ned by 
hoosing �nitely many quanti�er-

free formulas of �rst-order logi
.

Spe
i�
ation. The abstra
t states in the predi
ate abstra
tion are built out of

monomials over predi
ates. Ea
h abstra
t state 
orresponds to a set of 
on
rete

states that satisfy the same set of predi
ates. Formally, given a �nite set of

quanti�er-free formulas of �rst-order logi
, � = f�

1

; �

2

; : : : ; �

n

g, and a \bit-

ve
tor" b 2 f0; 1g

n

, we write hb; �i for a monomial whose ith 
onjun
t is �

i

if

b

i

= 1, and :�

i

otherwise.

De�nition 7 (Predi
ate abstra
tion). Given an LTS S and a �nite set � =

f�

1

; �

2

; : : : ; �

n

g of quanti�er-free formulas of �rst-order logi
, we derive a �nite-

state abstra
t MTS B

�

following De�nition 6 (A

1

is S and A

2

is B

�

) in su
h a

way that:

{ �

def

= �

�

b

� �

S

� f0; 1g

n

, where s �

�

b

b i� s j= hb; �i; and

{ �

B

�

def

= fb 2 f0; 1g

n

j s �

�

b

b for some s 2 �

S

g, whi
h makes �

�

b

total.

Implementing may-su

essors of a predi
ate abstra
tion. Current tool-supported

predi
ate-abstra
tion frameworks [17, 14, 32, 9, 2, 1℄ 
an be viewed as 
onstru
t-

ing an abstra
tion of the may-
omponent of B

�

de�ned above. We now review

how to 
ompute the set of abstra
t may-su

essors for a single program state-

ment.

Following [14℄, we use BDDs over boolean variables x

1

; x

2

; : : : ; x

n

as repre-

sentations of su
h sets. If  is a boolean 
ombination of f�

i

j m � i � ng, we


ompute in (3) below a BDD, denoted by H

may

( ; true;m), for representing the



set of may-su

essors of  . The de�nition of H

may

is essentially the de�nition of

H in [14℄ where post( )^ � is repla
ed by  ^: ~pre(:�) (to fa
ilitate dualizing

this 
onstru
tion later).

H

may

( ; �; i)

def

=

8

>

>

<

>

>

:

(x

i

^H

may

( ; � ^ �

i

; i+ 1))

_(:x

i

^H

may

( ; � ^ :�

i

; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ : ~pre(:�) is satis�able;

0 if i = n+ 1 and  ^ : ~pre(:�) is unsatis�able:

(3)

The BDD in (3) 
an be 
omputed using standard BDD operations [6℄ plus the

optimizations dis
ussed in [14℄, while the satis�ability 
he
ks 
an be 
omputed

by 
alling a theorem prover. Unwinding the re
ursion in the de�nition above, it

is 
lear that the set of may-su

essors of  
omputed by H

may

is:

next( )

may

b

def

= fb

0

2 �

B

j  ^ : ~pre(:hb

0

; �i) is satis�able g: (4)

Implementing must-su

essors of a predi
ate abstra
tion. The logi
al duality of

may versus must is 
aptured by repla
ing the satis�ability 
he
k of  ^: ~pre(:�)

in (3) by the unsatis�ability 
he
k of  ^ ~pre(:�) in the following equation (5).

H

must

( ; �; i)

def

=

8

>

>

<

>

>

:

(x

i

^H

must

( ; � ^ �

i

; i+ 1))

_(:x

i

^H

must

( ; � ^ :�

i

; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ ~pre(:�) is unsatis�able;

0 if i = n+ 1 and  ^ ~pre(:�) is satis�able:

(5)

Thus, the set of must-su

essors of  represented by the BDD H

must

( ; true;m)

is:

next( )

must

b

def

= fb

0

2 �

B

j  ^ ~pre(:hb

0

; �i) is unsatis�able g: (6)

We now show that the BDDs 
omputed by H

may

and H

must

represent exa
tly

the transitions spe
i�ed in De�nition 7.

Theorem 2 (Soundness and 
ompleteness).

{ b!

may

b

0

in B

�

i� b

0

2 next(hb; �i)

may

b

;

{ b!

must

b

0

in B

�

i� b

0

2 next(hb; �i)

must

b

.

Proof. The proof follows from the dire
t appli
ation of the de�nitions and is

omitted here due to spa
e 
onstraints.

Cost. In the worst 
ase, the 
omputation of H

may

(hb; �i; true;m) makes O(2

n

)


alls to the theorem prover. Similarly, the 
omputation of H

must

(hb; �i; true;m)

makes at most O(2

n

) 
alls to the theorem prover. Hen
e, the 
omplexity of 
om-

puting H

must

is the same as the 
omplexity of 
omputing H

may

.

Note that optimizations for 
omputing H

may

dis
ussed in [14℄ 
an also be

used when 
omputing H

must

. Our algorithm also a

ommodates the 
omplex-

ity of theorem-proving by allowing the sound over-approximation of H

may

and



under-approximation of H

must

as follows: in both 
ases, simply 
onvert the ab-

sen
e of an answer, when trun
ating the 
omputation performed by the satis�-

ability 
he
ker, into \satis�able".

Predi
ate-Cartesian Abstra
tion. Unfortunately, predi
ate abstra
tion of

MTSs is not in
remental: adding a new predi
ate �

n+1

to � may not yield a

re�nement of the abstra
tion, and hen
e the entire abstra
tion may need to be

re
omputed. This is illustrated by the following example.

Example 2. Revisiting Example 1, if � = f�

2

; �

3

g, then B

�

has four states, ea
h

with a must-transition to itself. However, adding the predi
ate �

1

to �, there

are no must-transitions from the abstra
t state �

1

^ �

2

^ �

3

(111) in B

f�

1

g[�

.

This is quite unfortunate: the information about variable y is lost even though

y is absent from the assignment x = z. But in Example 1 we saw that there is a

must-transition from �

1

^�

2

^�

3

to the disjun
tion (�

1

^�

2

^�

3

)_(:�

1

^�

2

^�

3

)

that 
orre
tly 
aptures the \absen
e of e�e
t" on y.

Computing must-transitions with abstra
t states of the above kind 
an be ex-

pensive: given n predi
ates, there are a possible 2

2

n

su
h states. This motivates

our next topi
: 
artesian abstra
tion.

Spe
i�
ation. The basi
 idea behind 
artesian abstra
tion is to approximate

sets of tuples by a tuple of sets. For instan
e, a set fh0; 1i; h1; 1ig is represented

by fh?; 1ig, where ? is used as a wild
ard for di�erent values (su
h as 0 and 1 in

this example). Formally, given a �nite set � = f�

1

; �

2

; : : : ; �

n

g of quanti�er-free

formulas of �rst-order logi
 and a \tri-ve
tor" 
 2 f0; 1; ?g

n

, we write h
; �i for

a monomial whose ith 
onjun
t is �

i

if 


i

= 1, :�

i

if 


i

= 0, and true otherwise.

Abstra
t states in C

�

are built out of \tri-ve
tors" of length n.

De�nition 8 (Predi
ate-
artesian abstra
tion). Given an LTS S and a

�nite set � = f�

1

; �

2

; : : : ; �

n

g of quanti�er-free formulas of �rst-order logi
, we

derive a �nite-state abstra
t MTS C

�

following De�nition 6 (A

1

is S and A

2

is

C

�

) in su
h a way that:

{ �

def

= �

�




Æ �

�

b

� �

S

�f0; 1; ?g

n

, where b �

�





 i� 81 � i � n : [


i

6= ? ) b

i

=




i

℄; and

{ �

C

�

def

= f
 2 f0; 1; ?g

n

j b �

�





 for some b 2 �

B

�

g, whi
h makes �

�




total.

The symbol ? means \don't 
are" in the above de�nition. It is easy to show that,

by 
onstru
tion, we have:

s (�

�




Æ �

�

b

) 
 i� s j= h
; �i: (7)

Note that the abstra
t MTS C

0

�

obtained by abstra
ting B

�

(whose states

are ve
tors of n-bits) with �

�




is typi
ally less pre
ise than C

�

. For instan
e, in

the 
ase of Examples 1 and 2 again, C

0

�

would not 
ontain any must-transition

from state 111 (i.e., �

1

^ �

2

^ �

3

), while C

�

does 
ontain a must-transition from

111 to state ?11.



The MTS C

�

supports an approximate union operation, de�ned using the point-

wise appli
ation of Kleene's alignment operator [21℄: 
[


0

def

= 


00

, where 


00

i

= 


i

if




i

= 


0

i

and ? otherwise. This operation thus approximates disjun
tions (sets) of

monomials by tri-ve
tors. As previously mentioned, 
artesian abstra
tion allows

for in
remental abstra
tion re�nement:

Theorem 3 (In
remental re�nement). For � = f�

1

; �

2

; : : : ; �

n

g and 	 =

� [ f�

n+1

; �

n+2

; : : : ; �

n+m

g, the MTS C

	

is a re�nement of the MTS C

�

.

Proof. The re�nement � � �

C

	

��

C

�

is given by f(


0

; 
) j 
 is a pre�x of 


0

g.

Implementing may-su

essors of a predi
ate-
artesian abstra
tion. Instead of rep-

resenting the abstra
t post-operator with a BDD as in the predi
ate abstra
tion


ase, we now use a Ternary De
ision Diagram [31℄, writing [x=v℄ for the repla
e-

ment of variable x with value v 2 f0; 1; ?g:

G

may

( ; �; i)

def

=

8

>

<

>

:

([x

i

=1℄^G

may

( ; �^�

i

; i+ 1))_([x

i

=0℄^G

may

( ; �^:�

i

; i + 1))

_([x

i

=?℄^G

may

( ; �; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ : ~pre(:�) is satis�able;

0 if i = n+ 1 and  ^ : ~pre(:�) is unsatis�able:

(8)

The fun
tion G

may

essentially 
omputes the abstra
t post-operator of SLAM [1℄.

Unwinding the re
ursion in the above de�nition, the set of may-su

essors of  

represented by the TDD G

may

( ; true;m) is:

next( )

may




def

= f


0

2 �

C

j  ^ : ~pre(:h


0

; �i) is satis�able g: (9)

Implementing must-su

essors of a predi
ate-
artesian abstra
tion. The TDD

G

must

( ; true;m), de�ned below, represents the set of must-su

essors of  . Sim-

ilar to our presentation of predi
ate abstra
tion, we are 
apturing the logi
al

duality of may versus must by repla
ing the satis�ability 
he
k of  ^ : ~pre(:�)

by the unsatis�ability 
he
k of  ^ ~pre(:�) in the following equation:

G

must

( ; �; i)

def

=

8

>

<

>

:

([x

i

=1℄^G

must

( ; �^�

i

; i + 1))_([x

i

=0℄^G

must

( ; �^:�

i

; i+ 1))

_([x

i

=?℄^G

must

( ; �; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ ~pre(:�) is unsatis�able;

0 if i = n+ 1 and  ^ ~pre(:�) is satis�able:

(10)

Again, by unwinding the re
ursion, the set of must-su

essors of  represented

by the TDD G

must

( ; true;m) is thus de�ned by:

next( )

must




def

= f


0

2 �

C

j  ^ ~pre(:h


0

; �i) is unsatis�able g: (11)

The following theorem states that the TDDs 
omputed by G

may

and G

must

represent exa
tly the transitions spe
i�ed in De�nition 8.

Theorem 4 (Soundness and 
ompleteness).

{ 
!

may




0

in C

�

i� 


0

2 next(h
; �i)

may




;

{ 
!

must




0

in C

�

i� 


0

2 next(h
; �i)

must




.

Proof. Similar to the proof of Theorem 2.



Cost. In the worst 
ase, the 
omputation of G

may

(h
; �i; true;m) makes O(3

n

)


alls to the theorem prover. Similarly, the 
omputation of G

must

(h
; �i; true;m)

makes at most O(3

n

) 
alls to the theorem prover. Therefore, the 
omplexity of


omputing G

must

is the same as the 
omplexity of 
omputing G

may

.

Note that the heuristi
s dis
ussed in [1℄ for approximating the 
al
ulation

of G

may

(h
; �i; true;m) by restri
ting the expansion of the re
ursion to a �xed

depth (rather than n) 
an be applied when 
omputing G

must

(h
; �i; true;m) as

well. Again, the absen
e of answers from the theorem prover for satis�ability


he
ks 
an be interpreted as \satis�able" to yield a sound over-approximation

of G

may

and under-approximation of G

must

.

5 Three-valued Model Che
king on MTSs

The automati
-abstra
tion algorithms of the previous se
tion 
an be used to

generate a MTS A

2

whi
h, by 
onstru
tion, is guaranteed to be an abstra
tion

(as de�ned in De�nition 4) of a given, possibly initial and 
on
rete, system A

1

.

By Theorem 1, we 
an 
he
k a modal mu-
al
ulus formula � on A

1

by analyzing

A

2

instead, resulting in three possible answers: either (i) � is ne
essarily true

on A

2

| its initial state is 
ontained in [j � j℄

ne


| and hen
e � holds for A

1

(the answer is true), or (ii) � is only possibly true on A

2

| its initial state

is 
ontained in [j � j℄

pos

only | and whether � holds on A

1

is unknown (the

answer is unknown), or (iii) � is not possibly true on A

2

| its initial state is

not 
ontained in [j � j℄

pos

| and � does not hold on A

1

(the answer is false).

We are thus left with a three-valued model-
he
king problem on MTSs whi
h,

following [5℄, 
an be redu
ed to two model-
he
king problems on LTSs as follows.

First, we rewrite formula � to a formula �

+

in positive normal form de�ned

over all the 
lauses of (1) plus (2) by pushing all negations in � inwards so that

they apply only to tt or ff in �

+

. This is done using the 
lassi
 rewrite rules:

::� = �, :(�

1

^ �

2

) = (:�

1

) _ (:�

2

), :((9�)�) = (8�)(:�), and :(�Z:�) =

�Z:(:�). Then, we translate �

+

into a formula T (�) by applying the following

translation rules: for all � 2 A
t, repla
e all o

urren
es of (8�) in �

+

by (8�

8

)

and repla
e all o

urren
es of (9�) in �

+

by (9�

9

).

Se
ond, from the MTS A

2

= (�

A

2

; A
t;!

must

;!

may

), we de�ne two LTSs

A

pess

2

and A

opt

2

, representing respe
tively the pessimisti
 and optimisti
 inter-

pretations of A

2

(see [5℄). These two LTSs are de�ned over the set

A
t




def

= f�

8

j � 2 A
tg [ f�

9

j � 2 A
tg (12)

of a
tion symbols. Pre
isely, we de�ne A

pess

2

= (�

A

2

; A
t




;!

pess

) with

(s; �

8

; s

0

) 2 !

pess

if (s; �; s

0

) 2 !

may

(13)

(s; �

9

; s

0

) 2 !

pess

if (s; �; s

0

) 2 !

must

(14)

and we de�ne A

opt

2

= (�

A

2

; A
t




;!

opt

) with

(s; �

8

; s

0

) 2 !

opt

if (s; �; s

0

) 2 !

must

(15)

(s; �

9

; s

0

) 2 !

opt

if (s; �; s

0

) 2 !

may

: (16)



Finally, we model-
he
k the modal mu-
al
ulus formula T (�) on the LTSs A

pess

2

and A

opt

2

, and 
ombine the results as spe
i�ed in the following theorem.

Theorem 5 (Corre
tness of model 
he
king algorithm). Given a MTS

A

2

and a modal mu-
al
ulus formula �, let T (�), A

pess

2

, and A

opt

2

be the formula

and the two LTSs (respe
tively) as de�ned above. For any state s 2 �

A

2

, we then

have

1. s 2 [j � j℄

ne


i� (A

pess

2

; s) j= T (�)

2. s 2 [j � j℄

pos

i� (A

opt

2

; s) j= T (�).

Proof. By indu
tion on the stru
ture of �.

The previous theorem is similar to Theorem 3 of [5℄. It redu
es three-valued

model 
he
king of MTSs to two traditional (two-valued) model-
he
king prob-

lems on regular LTSs, namely (A

pess

2

; s) j= T (�) and (A

opt

2

; s) j= T (�). Sin
e

the transformations performed to obtain T (�), (A

pess

2

; s), and (A

opt

2

; s) 
an be

done in 
onstant spa
e and time linear in the size of the formula and MTS re-

spe
tively, three-valued model 
he
king on MTSs has the same time and spa
e


omplexity as two-valued model 
he
king on LTSs. Moreover, the problem 
an be

solved in pra
ti
e using existing model-
he
king tools for LTSs, with all the op-

timizations that these tools may already implement. In parti
ular, if the re�ned

system A

1

is 
on
rete and 
omposed of multiple 
on
urrent LTSs or of re
ursive

pro
edures (LTSs extended with a \
all-sta
k"), the abstra
tion algorithms of

the previous se
tion will preserve the ar
hite
ture of A

1

when generating A

2

,

and existing tools for model-
he
king 
on
urrent or pushdown systems 
an be

applied to A

pess

2

and A

opt

2

.

6 Con
lusions

We developed a framework for automati
 program abstra
tion based on modal

transition systems. This framework 
an be used for model-
he
king any formula

of the modal mu-
al
ulus, and is also appli
able to the veri�
ation of 
on
ur-

rent and pushdown systems. It uses 
artesian abstra
tion, implemented with

TDDs and quanti�er-free �rst-order-logi
 theorem-proving, to extend existing

predi
ate-abstra
tion te
hniques to the veri�
ation of formulas 
ontaining ar-

bitrarily nested path quanti�ers. Cartesian abstra
tion has no signi�
ant 
ost

overhead and is 
ompatible with the standard in
remental re�nement pro
ess

for adding more predi
ates.
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