
Abstration-based Model Cheking

using Modal Transition Systems

Patrie Godefroid

1

, Mihael Huth

2

, and Radha Jagadeesan

?3

1

Bell Laboratories, Luent Tehnologies, god�bell-labs.om

2

Computing and Information Sienes, Kansas State University, huth�is.ksu.edu

3

Department of Computer Siene, Loyola University of Chiago, radha�s.lu.edu

Abstrat. We present a framework for automati program abstra-

tion that an be used for model heking any formula of the modal

mu-alulus. Unlike traditional onservative abstrations whih an only

prove universal properties, our framework an both prove and disprove

any formula inluding arbitrarily nested path quanti�ers. We disuss

algorithms for automatially generating an abstrat Modal Transition

System (MTS) by adapting existing prediate and artesian abstration

tehniques. We show that model heking arbitrary formulas using ab-

strat MTSs an be done at the same omputational ost as model hek-

ing universal formulas using onservative abstrations.

1 Introdution

There are essentially two approahes for extending the appliability of model

heking to programs written in general-purpose programming languages suh

as C or Java. The �rst approah onsists of adapting existing model-heking

tehniques into a form of systemati testing that is appliable to proesses ex-

euting arbitrary ode (e.g., [16℄); although sound, this approah is inherently

inomplete for large systems. The seond approah onsists of automatially

extrating a model out of a program by a stati analysis of its ode, and of ana-

lyzing this model using existing model-heking tehniques (e.g., [1, 9℄); although

automati abstration an be omplete, this approah is generally unsound sine

abstration usually introdues unrealisti behaviors that may yield to spurious

errors being reported when analyzing the model.

In this paper, we study the latter approah and show how automati ab-

stration an be performed in suh a way that it yields veri�ation results whose

ompleteness and soundness an be both guaranteed. We also show how au-

tomati abstration an be applied to hek arbitrary formulas of the modal

mu-alulus [22℄, thus inluding negation and arbitrarily nested path quanti-

�ers. Maybe surprisingly, both extensions an be implemented in ombination

with existing abstration tehniques without inurring any signi�ant omputa-

tional overhead. Our algorithms ould be used to extend the sope of existing

tools for (onservative) automati abstration suh as SLAM [1℄ and Bandera [9℄,

?

Supported by NSF CCR-9901071.



whih urrently support the veri�ation of universal properties only [7℄. Our al-

gorithms to onstrut abstrat transition systems an also be used in the ontext

of the veri�ation of arbitrary modal mu-alulus formulas with methods based

on theorem-proving [30℄.

Allowing the spei�ation of arbitrary formulas with nested path quanti�ers

makes it possible to express more elaborate properties of the temporal behav-

ior of a reative program, suh as \for all possible input values, there exists an

exeution path of the system that allows the user to restart the servie". Unfor-

tunately, the veri�ation of suh properties neessitates the relation between the

onrete program and an abstrat program to be more onstraining than a sim-

ulation relation [26, 25℄. Although bisimulation [28, 27℄ over Labeled Transition

Systems (LTSs) reets all suh general properties [18℄, it is persuasively argued

in [24, 23℄ to be ill-suited for our ontext: as an equivalene relation, it on�nes

the hoie of an abstration to the implementation's equivalene lass, whih is

too limiting to allow for ompat abstrations.

For this reason, we use Modal Transition Systems (MTS) [24, 23℄ for rep-

resenting abstrat systems in order to allow their spei�ations to be partially

de�ned. MTSs are LTSs with two kinds of transitions, termed may and must

transitions, satisfying the onsisteny ondition that every must-transition is

also a may-transition. A MTS an be \re�ned" by preserving at least all must-

transitions (and maybe adding some) while eliminating some may-transitions.

Sine this re�nement preorder on MTSs preserves all properties expressible in

the modal mu-alulus, we an verify any suh properties on the soure (on-

rete) program by verifying these on any abstrat MTS that is re�ned by this

onrete program; onversely, if there exists a behavior of the abstrat MTS that

refutes the property, the existene of a refuting behavior of the onrete program

is also immediately guaranteed.

An alternative representation for abstrat systems is the partial Kripke stru-

ture [4, 5℄. Partial Kripke strutures are Kripke strutures whose states are la-

beled with atomi propositions that an have any of three possible truth values:

true, false or unknown. Partial Kripke strutures are losely related to MTSs

sine the transition relation of a MTS an be viewed as a funtion assoiating

eah transition with one of three possible values: must-transitions orrespond

to the value true, may-transitions that are not must-transition are mapped to

unknown, and absent transitions render false. It an be shown that any par-

tial Kripke struture an be translated into an equivalent MTS, and vie versa.

This orrespondene makes it possible to apply the results of [4, 5℄ (in partiu-

lar, model-heking algorithms and omplexity bounds) to the ontext of MTSs.

Conversely, the abstration tehniques developed in this paper an be adapted

to the ontext of partial Kripke strutures.

A ruial aspet of our model-heking framework is that it not only per-

mits the abstration of omplete programs, but also the re�nement of partially

spei�ed abstrat programs by more onrete abstrat programs, to adequately

aommodate the inremental proess of building more detailed abstrations by

suessive approximations, as used in SLAM or Bandera for instane.



We develop an expressive and exible relational alulus for the sound spe-

i�ation of MTSs as abstrations. This alulus adapts the de�nitions of [12, 13℄

to partially spei�ed systems and is omplete in the sense that it an speify ev-

ery re�nement of MTSs. In partiular, any abstrat interpretation of data values

extends to a relational abstration expressible in the alulus. In this alu-

lus, we speify two standard abstrations of abstrat interpretation [10℄, namely

prediate abstration [17, 14, 32℄ and artesian abstration [3, 1℄ (also known as

\independent attribute analysis"), and desribe their implementations:

{ When applied to may-transition relations only, the spei�ations and imple-

mentations we present oinide with traditional \onservative" abstration.

{ We disuss how these spei�ations an be implemented using standard tools

(automati theorem proving for quanti�er-free �rst-order logi and BDDs),

exept for the use of Ternary Deision Diagrams (TDDs) [31℄ for arte-

sian abstration. We show that the omputational ost of onstruting a

must-transition relation is the same as that of onstruting a may-transition

relation.

{ We show that our implementations are sound and (relatively) omplete

1

with

respet to their spei�ations in our alulus. Moreover, they onveniently

model approximations in alls to a theorem prover as under-approximations

of must-transitions and over-approximations of may-transitions.

{ We prove that abstration re�nement is inremental for MTSs built using

artesian abstration.

Prediate abstration [17, 14, 32℄ is based on a set of prediates, �

def

= f�

1

; : : : ; �

n

g,

typially quanti�er-free formulas of �rst-order logi (e.g. (x == y+1) || (x <

y-5)). An abstrat state is indued by n-ary onjuntions, alled monomials,

with eah prediate �

i

ontributing either �

i

or :�

i

. This abstration identi�es

onrete states that satisfy the same prediates in �.

Given a set of states represented by a formula of quanti�er-free �rst-order

logi  , the set  

0

of abstrat may-suessors states is de�ned as the disjuntion

of all monomials � suh that post( )^� is satis�able [17, 14℄.

2

Computing  

0

an

be done using automati theorem proving for quanti�er-free formulas, and [14℄

shows how to use a representation based on BDDs [6℄ at a propositional level

to ompatly represent the onstrution of  

0

as a disjuntion of onjuntions.

We an ompute must-transitions by dualizing, in a logial sense, the above

onstrution: for  as above, we show that the set of must-suessors is the

disjuntion of all monomials � suh that  ^ ~pre(:�) is unsatis�able.

3

Unfortunately, this approah is not inremental: adding a new prediate �

n+1

to � may not yield a re�nement of the abstration, and hene the entire abstra-

tion may need to be reomputed. This shortoming an be eliminated at the

expense of enlarging the abstrat state spae: states are now built as disjun-

tions of abstrat states from prediate abstration. Using disjuntions an yield

1

Whih are perfore relative to the ompleteness of the underlying theorem prover.

2

post( ) is the set of immediate suessor states of states satisfying  .

3

~pre(:�) is the weakest preondition of states satisfying :�.



a must-omponent that is more preise than the one obtained from prediate ab-

stration, but an also be muh more expensive: for n prediates, an abstration

using disjuntions an have 2

2

n

states. This tradeo� between ost and preision

is disussed in [8℄.

This limitation motivates the next layer of approximation: artesian abstra-

tion, whih an be used on top of prediate abstration in order to approximate

sets of n-tuples by n-tuples of sets. We modify the work of [14℄ to synthesize

abstrat states and abstrat may-suessors for this omposite abstration, re-

plaing BDDs by TDDs [31℄. Then we onstrut must-transitions by dualizing, in

the logial sense, the onstrution of may-transitions using artesian abstration.

We omplete this framework with an algorithm for model heking any modal

mu-alulus formula on an abstrat MTS. Following [4, 5℄, any (three-valued)

model-heking problem on MTSs an be redued to two traditional (two-valued)

model-heking problems on regular LTSs.

The rest of the paper is organized as follows. Setion 2 disusses bakground

material on MTSs. Setion 3 formally develops a relational alulus of abstra-

tions and proves a basi result that permits the methods of analysis of this paper.

In Setion 4, we apply these methods to prediate and artesian abstration and

prove that artesian abstration allows for inremental re�nement. Setion 5

disusses three-valued model-heking for MTSs, and Setion 6 onludes.

2 Bakground: Abstrat Modal Transition Systems

MTSs [24, 23℄ are de�ned from labeled transition systems.

De�nition 1 (Labeled transition systems). A labeled transition system

[27℄ (LTS) is a tuple K = (�

K

; At;�!), where �

K

is a set of states, At

is a set of ation symbols, and �! � �

K

� At � �

K

is a transition rela-

tion. We all K �nitely-branhing if for eah s 2 �

K

, the set fs

0

2 �

K

j 9� 2

At: (s; �; s

0

) 2 �!g is �nite.

A strategy to reason about a omplex program represented by an LTS C onsists

of (i) generating from C an abstrat LTS A, (ii) heking whether A satis�es a

behavioral property �, and (iii) transferring those results to the original program

C. For (i) and (iii), standard pratie [10, 7℄ is to onstrut some A suh that the

initial states of C and A are related by a simulation.

De�nition 2 (Simulation). A relation � � �

C

� �

A

is a simulation [26℄ i�

for any  � a and !

�



0

there is some a

0

2 �

A

suh that a!

�

a

0

and 

0

� a

0

.

The temporal logi L

8

whose abstrat syntax is

� ::= tt j ff j Z j �

1

^ �

2

j �

1

_ �

2

j (8�)� j �Z:� (1)

with � 2 At, variables Z 2 Var for the greatest �xed point �Z:�, and usual

semantis, expresses universal properties [29℄. We assume here the semantis



of (losed) formulas over LTSs is de�ned as sets of states. For instane, the

semantis of (8�)� is:

[j (8�)� j℄

def

= fs 2 �

K

j for all s

0

2 �

K

, s!

�

s

0

implies s

0

2 [j � j℄g:

A simulation relation  � a ensures that a 2 [j � j℄ (read \a satis�es �") implies

 2 [j � j℄. Thus, we may verify any universal property � 2 L

8

(suh as \For

all paths, nothing bad will happen") at  by (i) omputing an abstrat model

A, (ii) establishing a simulation � satisfying  � a, and (iii) verifying � at a.

Unfortunately, a negative hek a 62 [j � j℄ does not imply anything about the

truth or falsity of  62 [j � j℄. At most, debugging information obtained from suh

a negative hek may be used to onstrut a more onrete version of A (a

re�nement), hoping that this more preise model either renders a positive hek

or that re�ned debugging information eventually \applies" to C as well.

In this paper, we argue that a better approah onsists of using MTSs instead

of LTSs for representing abstrations of LTSs.

De�nition 3 (MTS). AMTS [24℄ is a pair K = (K

must

;K

may

), where K

must

=

(�

K

; At;!

must

) and K

may

= (�

K

; At;!

may

) are LTSs suh that !

must

�

!

may

.

An LTS is simply a MTS K where K

must

equals K

may

. The intuition behind

the inlusion above is that transitions that are neessarily true (K

must

) are also

possibly true (K

may

). Reasoning about the existene of transitions of MTSs an

be viewed as reasoning with a three-valued logi with truth values true, false,

and unknown [4℄: transitions that are neessarily true are true, transitions that

are possibly true but not neessarily true are unknown, and transitions that are

not possibly true are false.

De�nition 4 (Re�nement [24℄). An MTS A

1

is a re�nement of an MTS A

2

if there exists a relation � � �

A

1

� �

A

2

suh that (i) � is a simulation from

A

may

1

to A

may

2

and (ii) � is a simulation from A

must

2

to A

must

1

. In that ase, we

also say that A

2

is an abstration of A

1

. We write � for the greatest re�nement

relation between MTSs.

MTSs an be used to both verify and refute any property of the full modal

mu-alulus, whih is de�ned as follows [22℄:

� ::= tt j Z j :� j �

1

^ �

2

j (9�)� j �Z:� (2)

where � 2 At, and Z 2 Var (variable for the least �xed point �Z:�).

De�nition 5 (Semantis of modal logi [19℄). For a MTS K and any modal

mu-alulus formula �, we de�ne a semantis [j � j℄

�

2 P(�

K

) �P(�

K

), where

P(�

K

) is the powerset of �

K

, ordered by set inlusion, �: Var ! P(�

K

) �

P(�

K

) is an environment, and [j � j℄

ne

�

and [j � j℄

pos

�

are the projetion of [j � j℄

�

to its �rst and seond omponent, respetively:

1. [j tt j℄

�

def

= h�

K

; �

K

i;



2. [j :� j℄

�

def

= h�

K

n [j � j℄

pos

�

; �

K

n [j � j℄

ne

�

i;

3. [j �

1

^ �

2

j℄

�

def

= h[j �

1

j℄

ne

�

\ [j �

2

j℄

ne

�

; [j �

1

j℄

pos

�

\ [j �

2

j℄

pos

�

i;

4. [j (9�)� j℄

�

def

= hfs 2 �

K

j for some s

0

, s!

a

must

s

0

and s

0

2 [j � j℄

ne

�

g;

fs 2 �

K

j for some s

0

, s!

a

may

s

0

and s

0

2 [j � j℄

pos

�

gi.

The treatment of negation is due to P. Kelb [20℄ and allows for verifying (s 2

[j � j℄

ne

) and refuting (s 2 [j :� j℄

ne

) property � at state s. For brevity, we did

not present the standard least-�xed point semantis of �Z:� (e.g., see [19℄).

Theorem 1 (Soundness and onsisteny of semantis [19℄). For any

MTSs, formulas �;  of the modal mu-alulus, and environments �:

1. [j � j℄

ne

�

� [j � j℄

pos

�

;

2. [j � ^ :� j℄

ne

�

= ;; and [j � _ :� j℄

pos

�

= �

K

; that is, the semantis is onsis-

tent for [j j℄

ne

and \omplete" for [j j℄

pos

;

3. if �a, then a 2 [j � j℄

ne

�

implies  2 [j � j℄

ne

�

; and  2 [j � j℄

pos

�

implies a 2

[j � j℄

pos

�

; that is, veri�ation and refutation of � are sound;

4. For LTSs, [j � j℄

ne

�

= [j � j℄

pos

�

and orresponds to the standard semantis for

labeled transition systems.

The semantis [j � j℄

ne

(without negation and �xed points) is the one given

by Larsen [23℄; it produes a logial haraterization of re�nement for �nitely

branhing

4

MTSs [23℄. Sine s 62 [j � j℄

pos

i� s 2 [j :� j℄

ne

, this logial harateri-

zation an be extended to the full mu-alulus (inluding negation). We thus ob-

tain that �a i� for all � of the modal mu-alulus, [a 2 [j � j℄

ne

)  2 [j � j℄

ne

℄.

3 A Relational Calulus for Abstrat MTSs

In [12℄, abstrat interpretation frameworks are systematially de�ned through

desription relations �:�

C

��

A

with suitable properties. We provide a general

alulus for speifying abstrat MTSs based on suh relations.

De�nition 6 (Relational abstration). Let A

1

= (A

must

1

; A

may

1

) be an MTS.

Given a set �

A

2

of abstrat states and a total relation

5

�:�

A

1

��

A

2

, we de�ne

A

2

= (�

A

2

; At;

must

�!;

may

�!) as follows:

{ a

2

!

�

must

a

0

2

i� for all a

1

2 �

A

1

with a

1

� a

2

there exists a

0

1

2 �

A

1

suh that

a

0

1

� a

0

2

and a

1

!

�

must

a

0

1

;

{ a

2

!

�

may

a

0

2

i� there exist a

1

2 �

A

1

and a

0

1

2 �

A

1

suh that a

1

� a

2

, a

0

1

� a

0

2

,

and a

1

!

�

may

a

0

1

.

This de�nition is a tool to speify abstrat MTSs. Its two omponents are sim-

ilar to the universal abstration �

89

and the (dual) existential abstration �

99

de�ned in [11℄, and to the relations R

89

and R

99

in [12℄.

4

may-omponents and must-omponents are �nitely-branhing.

5

That is, (8a

1

2 �

A

1

9a

2

2 �

A

2

: a

1

�a

2

) ^ (8a

2

2 �

A

2

9a

1

2 �

A

1

: a

1

�a

2

).



Lemma 1. Given A

1

and A

2

as above, A

2

is a MTS and � is a re�nement.

Totality is a natural ondition in appliations and De�nition 6 an express step-

wise abstrations, produts, sums, et; moreover, it translates to other frame-

works| e.g. the one based on Galois onnetions [10℄ | in the manner desribed

in [12℄.

The spei�ation in De�nition 6 is also omplete: given an MTS A

1

, any

abstration A

2

of A

1

via a total re�nement relation � an be onstruted using

De�nition 6 by hoosing � as �. The following example illustrates De�nition 6.

Example 1. Let A

1

be a omplete MTS (A

may

1

equals A

must

1

) whose in�nite

state spae is given by all possible valuations of three integer variables x, y,

and z. Any state  is of the form fx 7! i; y 7! j; z 7! kg, for some integers

i; j; k. Let us assume that transitions of A

1

are those indued by the single

assignment statement x = z, e.g. there is a transition from state  above to

state 

0

= fx 7! k; y 7! j; z 7! kg.

The prediates �

1

def

= odd(x), �

2

def

= (y > 0), and �

3

def

= (z < 0) indue an

equivalene relation on the states of A

1

: two states are equivalent if they agree

on all three prediates. Let �

A

2

be the set of all sets of equivalene lasses of

states of A

1

. Therefore, states of A

2

are representable as boolean formulas built

from the �

i

's. By De�nition 6, there is a may-transition from a to a

0

in �

A

2

i�

there are  2 a and 

0

2 a

0

suh that  has a transition to 

0

in A

1

. Dually, there

is a must-transition from a to a

0

i�, for all  2 a, there exists 

0

2 a

0

suh that

 has a transition to 

0

in A

1

.

For instane, there is (i) a may-transition from the state �

1

^ �

2

^ �

3

to the

states �

1

^ �

2

^�

3

and :�

1

^ �

2

^�

3

; (ii) a must-transition from �

1

^�

2

^ �

3

to

the disjuntion of monomials (�

1

^ �

2

^ �

3

)_ (:�

1

^ �

2

^ �

3

); but (iii) no must-

transition from �

1

^�

2

^�

3

to any monomial, e.g. �

1

^�

2

^�

3

or :�

1

^�

2

^�

3

.

4 Implementation of Relationally Spei�ed MTSs

In this setion, we onsider in turn prediate abstration (also alled \boolean

abstration") and artesian abstration. When applied to may-transition rela-

tions only, the spei�ations and implementations we present oinide with tra-

ditional \onservative" abstrations. We implement these spei�ations with

standard tools (automati theorem-proving for quanti�er-free �rst-order logi

and BDDs), exept for the use of TDDs. We show that the omputational ost

of onstruting a must-transition relation is the same as that of onstruting a

may-transition relation. We then show that our implementations are sound and

omplete (relatively to the ompleteness of the underlying theorem prover) with

respet to their spei�ations. Moreover, they onveniently model approxima-

tions in alls to a theorem prover as under-approximations of must-transitions

and over-approximations of may-transitions. Importantly, we prove that abstra-

tion re�nement is inremental for MTSs built using artesian abstration.



Notation. For any prediate � on a set �

S

of states, for any label � 2 At, the

post operator [10℄ and weakest preondition [15℄ are de�ned as

post

�

(�)

def

= fs

0

2 �

S

j 9s 2 �

S

: s j= �; s!

�

s

0

g

~pre

�

(�)

def

= fs 2 �

S

j 8s

0

2 �

S

: s!

�

s

0

implies s

0

j= �g:

These operators satisfy several interesting relationships [10℄. Here we only use

the property that, for any prediates �;  on states, post

�

( ) ^ � is satis�able

if and only if  ^ : ~pre

�

(:�) is satis�able.

Methodologial assumptions. We assume that an abstrat program is built by

onverting eah program statement from a transformer operating on onrete

states to a transformer operating on abstrat states, as illustrated in Example 1.

For notational onveniene, we fous in what follows on the abstration of a

single program statement, and hene onsider MTSs, post, and ~pre without ex-

pliit ation labels. For a given program statement and a quanti�er-free formula

�, we assume that ~pre(�) is quanti�er-free as well. This is the ase for usual pro-

gramming language onstruts [17℄ and enables the use of deision proedures

as implemented in tools suh as SVC [14℄.

Prediate Abstration. Prediate abstration [17, 14, 32℄ ollapses an in�nite-

state LTS into a �nite-state MTS de�ned by hoosing �nitely many quanti�er-

free formulas of �rst-order logi.

Spei�ation. The abstrat states in the prediate abstration are built out of

monomials over prediates. Eah abstrat state orresponds to a set of onrete

states that satisfy the same set of prediates. Formally, given a �nite set of

quanti�er-free formulas of �rst-order logi, � = f�

1

; �

2

; : : : ; �

n

g, and a \bit-

vetor" b 2 f0; 1g

n

, we write hb; �i for a monomial whose ith onjunt is �

i

if

b

i

= 1, and :�

i

otherwise.

De�nition 7 (Prediate abstration). Given an LTS S and a �nite set � =

f�

1

; �

2

; : : : ; �

n

g of quanti�er-free formulas of �rst-order logi, we derive a �nite-

state abstrat MTS B

�

following De�nition 6 (A

1

is S and A

2

is B

�

) in suh a

way that:

{ �

def

= �

�

b

� �

S

� f0; 1g

n

, where s �

�

b

b i� s j= hb; �i; and

{ �

B

�

def

= fb 2 f0; 1g

n

j s �

�

b

b for some s 2 �

S

g, whih makes �

�

b

total.

Implementing may-suessors of a prediate abstration. Current tool-supported

prediate-abstration frameworks [17, 14, 32, 9, 2, 1℄ an be viewed as onstrut-

ing an abstration of the may-omponent of B

�

de�ned above. We now review

how to ompute the set of abstrat may-suessors for a single program state-

ment.

Following [14℄, we use BDDs over boolean variables x

1

; x

2

; : : : ; x

n

as repre-

sentations of suh sets. If  is a boolean ombination of f�

i

j m � i � ng, we

ompute in (3) below a BDD, denoted by H

may

( ; true;m), for representing the



set of may-suessors of  . The de�nition of H

may

is essentially the de�nition of

H in [14℄ where post( )^ � is replaed by  ^: ~pre(:�) (to failitate dualizing

this onstrution later).

H

may

( ; �; i)

def

=

8

>

>

<

>

>

:

(x

i

^H

may

( ; � ^ �

i

; i+ 1))

_(:x

i

^H

may

( ; � ^ :�

i

; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ : ~pre(:�) is satis�able;

0 if i = n+ 1 and  ^ : ~pre(:�) is unsatis�able:

(3)

The BDD in (3) an be omputed using standard BDD operations [6℄ plus the

optimizations disussed in [14℄, while the satis�ability heks an be omputed

by alling a theorem prover. Unwinding the reursion in the de�nition above, it

is lear that the set of may-suessors of  omputed by H

may

is:

next( )

may

b

def

= fb

0

2 �

B

j  ^ : ~pre(:hb

0

; �i) is satis�able g: (4)

Implementing must-suessors of a prediate abstration. The logial duality of

may versus must is aptured by replaing the satis�ability hek of  ^: ~pre(:�)

in (3) by the unsatis�ability hek of  ^ ~pre(:�) in the following equation (5).

H

must

( ; �; i)

def

=

8

>

>

<

>

>

:

(x

i

^H

must

( ; � ^ �

i

; i+ 1))

_(:x

i

^H

must

( ; � ^ :�

i

; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ ~pre(:�) is unsatis�able;

0 if i = n+ 1 and  ^ ~pre(:�) is satis�able:

(5)

Thus, the set of must-suessors of  represented by the BDD H

must

( ; true;m)

is:

next( )

must

b

def

= fb

0

2 �

B

j  ^ ~pre(:hb

0

; �i) is unsatis�able g: (6)

We now show that the BDDs omputed by H

may

and H

must

represent exatly

the transitions spei�ed in De�nition 7.

Theorem 2 (Soundness and ompleteness).

{ b!

may

b

0

in B

�

i� b

0

2 next(hb; �i)

may

b

;

{ b!

must

b

0

in B

�

i� b

0

2 next(hb; �i)

must

b

.

Proof. The proof follows from the diret appliation of the de�nitions and is

omitted here due to spae onstraints.

Cost. In the worst ase, the omputation of H

may

(hb; �i; true;m) makes O(2

n

)

alls to the theorem prover. Similarly, the omputation of H

must

(hb; �i; true;m)

makes at most O(2

n

) alls to the theorem prover. Hene, the omplexity of om-

puting H

must

is the same as the omplexity of omputing H

may

.

Note that optimizations for omputing H

may

disussed in [14℄ an also be

used when omputing H

must

. Our algorithm also aommodates the omplex-

ity of theorem-proving by allowing the sound over-approximation of H

may

and



under-approximation of H

must

as follows: in both ases, simply onvert the ab-

sene of an answer, when trunating the omputation performed by the satis�-

ability heker, into \satis�able".

Prediate-Cartesian Abstration. Unfortunately, prediate abstration of

MTSs is not inremental: adding a new prediate �

n+1

to � may not yield a

re�nement of the abstration, and hene the entire abstration may need to be

reomputed. This is illustrated by the following example.

Example 2. Revisiting Example 1, if � = f�

2

; �

3

g, then B

�

has four states, eah

with a must-transition to itself. However, adding the prediate �

1

to �, there

are no must-transitions from the abstrat state �

1

^ �

2

^ �

3

(111) in B

f�

1

g[�

.

This is quite unfortunate: the information about variable y is lost even though

y is absent from the assignment x = z. But in Example 1 we saw that there is a

must-transition from �

1

^�

2

^�

3

to the disjuntion (�

1

^�

2

^�

3

)_(:�

1

^�

2

^�

3

)

that orretly aptures the \absene of e�et" on y.

Computing must-transitions with abstrat states of the above kind an be ex-

pensive: given n prediates, there are a possible 2

2

n

suh states. This motivates

our next topi: artesian abstration.

Spei�ation. The basi idea behind artesian abstration is to approximate

sets of tuples by a tuple of sets. For instane, a set fh0; 1i; h1; 1ig is represented

by fh?; 1ig, where ? is used as a wildard for di�erent values (suh as 0 and 1 in

this example). Formally, given a �nite set � = f�

1

; �

2

; : : : ; �

n

g of quanti�er-free

formulas of �rst-order logi and a \tri-vetor"  2 f0; 1; ?g

n

, we write h; �i for

a monomial whose ith onjunt is �

i

if 

i

= 1, :�

i

if 

i

= 0, and true otherwise.

Abstrat states in C

�

are built out of \tri-vetors" of length n.

De�nition 8 (Prediate-artesian abstration). Given an LTS S and a

�nite set � = f�

1

; �

2

; : : : ; �

n

g of quanti�er-free formulas of �rst-order logi, we

derive a �nite-state abstrat MTS C

�

following De�nition 6 (A

1

is S and A

2

is

C

�

) in suh a way that:

{ �

def

= �

�



Æ �

�

b

� �

S

�f0; 1; ?g

n

, where b �

�



 i� 81 � i � n : [

i

6= ? ) b

i

=



i

℄; and

{ �

C

�

def

= f 2 f0; 1; ?g

n

j b �

�



 for some b 2 �

B

�

g, whih makes �

�



total.

The symbol ? means \don't are" in the above de�nition. It is easy to show that,

by onstrution, we have:

s (�

�



Æ �

�

b

)  i� s j= h; �i: (7)

Note that the abstrat MTS C

0

�

obtained by abstrating B

�

(whose states

are vetors of n-bits) with �

�



is typially less preise than C

�

. For instane, in

the ase of Examples 1 and 2 again, C

0

�

would not ontain any must-transition

from state 111 (i.e., �

1

^ �

2

^ �

3

), while C

�

does ontain a must-transition from

111 to state ?11.



The MTS C

�

supports an approximate union operation, de�ned using the point-

wise appliation of Kleene's alignment operator [21℄: [

0

def

= 

00

, where 

00

i

= 

i

if



i

= 

0

i

and ? otherwise. This operation thus approximates disjuntions (sets) of

monomials by tri-vetors. As previously mentioned, artesian abstration allows

for inremental abstration re�nement:

Theorem 3 (Inremental re�nement). For � = f�

1

; �

2

; : : : ; �

n

g and 	 =

� [ f�

n+1

; �

n+2

; : : : ; �

n+m

g, the MTS C

	

is a re�nement of the MTS C

�

.

Proof. The re�nement � � �

C

	

��

C

�

is given by f(

0

; ) j  is a pre�x of 

0

g.

Implementing may-suessors of a prediate-artesian abstration. Instead of rep-

resenting the abstrat post-operator with a BDD as in the prediate abstration

ase, we now use a Ternary Deision Diagram [31℄, writing [x=v℄ for the replae-

ment of variable x with value v 2 f0; 1; ?g:

G

may

( ; �; i)

def

=

8

>

<

>

:

([x

i

=1℄^G

may

( ; �^�

i

; i+ 1))_([x

i

=0℄^G

may

( ; �^:�

i

; i + 1))

_([x

i

=?℄^G

may

( ; �; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ : ~pre(:�) is satis�able;

0 if i = n+ 1 and  ^ : ~pre(:�) is unsatis�able:

(8)

The funtion G

may

essentially omputes the abstrat post-operator of SLAM [1℄.

Unwinding the reursion in the above de�nition, the set of may-suessors of  

represented by the TDD G

may

( ; true;m) is:

next( )

may



def

= f

0

2 �

C

j  ^ : ~pre(:h

0

; �i) is satis�able g: (9)

Implementing must-suessors of a prediate-artesian abstration. The TDD

G

must

( ; true;m), de�ned below, represents the set of must-suessors of  . Sim-

ilar to our presentation of prediate abstration, we are apturing the logial

duality of may versus must by replaing the satis�ability hek of  ^ : ~pre(:�)

by the unsatis�ability hek of  ^ ~pre(:�) in the following equation:

G

must

( ; �; i)

def

=

8

>

<

>

:

([x

i

=1℄^G

must

( ; �^�

i

; i + 1))_([x

i

=0℄^G

must

( ; �^:�

i

; i+ 1))

_([x

i

=?℄^G

must

( ; �; i+ 1)) if 0 < i � n;

1 if i = n+ 1 and  ^ ~pre(:�) is unsatis�able;

0 if i = n+ 1 and  ^ ~pre(:�) is satis�able:

(10)

Again, by unwinding the reursion, the set of must-suessors of  represented

by the TDD G

must

( ; true;m) is thus de�ned by:

next( )

must



def

= f

0

2 �

C

j  ^ ~pre(:h

0

; �i) is unsatis�able g: (11)

The following theorem states that the TDDs omputed by G

may

and G

must

represent exatly the transitions spei�ed in De�nition 8.

Theorem 4 (Soundness and ompleteness).

{ !

may



0

in C

�

i� 

0

2 next(h; �i)

may



;

{ !

must



0

in C

�

i� 

0

2 next(h; �i)

must



.

Proof. Similar to the proof of Theorem 2.



Cost. In the worst ase, the omputation of G

may

(h; �i; true;m) makes O(3

n

)

alls to the theorem prover. Similarly, the omputation of G

must

(h; �i; true;m)

makes at most O(3

n

) alls to the theorem prover. Therefore, the omplexity of

omputing G

must

is the same as the omplexity of omputing G

may

.

Note that the heuristis disussed in [1℄ for approximating the alulation

of G

may

(h; �i; true;m) by restriting the expansion of the reursion to a �xed

depth (rather than n) an be applied when omputing G

must

(h; �i; true;m) as

well. Again, the absene of answers from the theorem prover for satis�ability

heks an be interpreted as \satis�able" to yield a sound over-approximation

of G

may

and under-approximation of G

must

.

5 Three-valued Model Cheking on MTSs

The automati-abstration algorithms of the previous setion an be used to

generate a MTS A

2

whih, by onstrution, is guaranteed to be an abstration

(as de�ned in De�nition 4) of a given, possibly initial and onrete, system A

1

.

By Theorem 1, we an hek a modal mu-alulus formula � on A

1

by analyzing

A

2

instead, resulting in three possible answers: either (i) � is neessarily true

on A

2

| its initial state is ontained in [j � j℄

ne

| and hene � holds for A

1

(the answer is true), or (ii) � is only possibly true on A

2

| its initial state

is ontained in [j � j℄

pos

only | and whether � holds on A

1

is unknown (the

answer is unknown), or (iii) � is not possibly true on A

2

| its initial state is

not ontained in [j � j℄

pos

| and � does not hold on A

1

(the answer is false).

We are thus left with a three-valued model-heking problem on MTSs whih,

following [5℄, an be redued to two model-heking problems on LTSs as follows.

First, we rewrite formula � to a formula �

+

in positive normal form de�ned

over all the lauses of (1) plus (2) by pushing all negations in � inwards so that

they apply only to tt or ff in �

+

. This is done using the lassi rewrite rules:

::� = �, :(�

1

^ �

2

) = (:�

1

) _ (:�

2

), :((9�)�) = (8�)(:�), and :(�Z:�) =

�Z:(:�). Then, we translate �

+

into a formula T (�) by applying the following

translation rules: for all � 2 At, replae all ourrenes of (8�) in �

+

by (8�

8

)

and replae all ourrenes of (9�) in �

+

by (9�

9

).

Seond, from the MTS A

2

= (�

A

2

; At;!

must

;!

may

), we de�ne two LTSs

A

pess

2

and A

opt

2

, representing respetively the pessimisti and optimisti inter-

pretations of A

2

(see [5℄). These two LTSs are de�ned over the set

At



def

= f�

8

j � 2 Atg [ f�

9

j � 2 Atg (12)

of ation symbols. Preisely, we de�ne A

pess

2

= (�

A

2

; At



;!

pess

) with

(s; �

8

; s

0

) 2 !

pess

if (s; �; s

0

) 2 !

may

(13)

(s; �

9

; s

0

) 2 !

pess

if (s; �; s

0

) 2 !

must

(14)

and we de�ne A

opt

2

= (�

A

2

; At



;!

opt

) with

(s; �

8

; s

0

) 2 !

opt

if (s; �; s

0

) 2 !

must

(15)

(s; �

9

; s

0

) 2 !

opt

if (s; �; s

0

) 2 !

may

: (16)



Finally, we model-hek the modal mu-alulus formula T (�) on the LTSs A

pess

2

and A

opt

2

, and ombine the results as spei�ed in the following theorem.

Theorem 5 (Corretness of model heking algorithm). Given a MTS

A

2

and a modal mu-alulus formula �, let T (�), A

pess

2

, and A

opt

2

be the formula

and the two LTSs (respetively) as de�ned above. For any state s 2 �

A

2

, we then

have

1. s 2 [j � j℄

ne

i� (A

pess

2

; s) j= T (�)

2. s 2 [j � j℄

pos

i� (A

opt

2

; s) j= T (�).

Proof. By indution on the struture of �.

The previous theorem is similar to Theorem 3 of [5℄. It redues three-valued

model heking of MTSs to two traditional (two-valued) model-heking prob-

lems on regular LTSs, namely (A

pess

2

; s) j= T (�) and (A

opt

2

; s) j= T (�). Sine

the transformations performed to obtain T (�), (A

pess

2

; s), and (A

opt

2

; s) an be

done in onstant spae and time linear in the size of the formula and MTS re-

spetively, three-valued model heking on MTSs has the same time and spae

omplexity as two-valued model heking on LTSs. Moreover, the problem an be

solved in pratie using existing model-heking tools for LTSs, with all the op-

timizations that these tools may already implement. In partiular, if the re�ned

system A

1

is onrete and omposed of multiple onurrent LTSs or of reursive

proedures (LTSs extended with a \all-stak"), the abstration algorithms of

the previous setion will preserve the arhiteture of A

1

when generating A

2

,

and existing tools for model-heking onurrent or pushdown systems an be

applied to A

pess

2

and A

opt

2

.

6 Conlusions

We developed a framework for automati program abstration based on modal

transition systems. This framework an be used for model-heking any formula

of the modal mu-alulus, and is also appliable to the veri�ation of onur-

rent and pushdown systems. It uses artesian abstration, implemented with

TDDs and quanti�er-free �rst-order-logi theorem-proving, to extend existing

prediate-abstration tehniques to the veri�ation of formulas ontaining ar-

bitrarily nested path quanti�ers. Cartesian abstration has no signi�ant ost

overhead and is ompatible with the standard inremental re�nement proess

for adding more prediates.

Aknowledgments

We wish to thank Glenn Bruns and David Shmidt for inspiring disussions and

helpful omments.



Referenes

1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstration for

Model Cheking C Programs. In T. Margaria and W. Yi, editors, Proeedings of

TACAS'2001, volume 2031 of LNCS, pages 268{283, Genova, Italy, April 2001.

Springer Verlag.

2. T. Ball and S. K. Rajamani. Bebop: A symboli model heker for boolean pro-

grams. In Proeedings of the Seventh International SPIN Workshop (SPIN 2000),

volume 1885, pages 113{130. Springer Verlag, 2000.

3. S. Bensalem, Y. Lakhneh, and S. Owre. Computing abstrations on in�nite state

systems ompositionally and automatially. In A. J. Hu and M. Vardi, editors,

Computer Aided Veri�ation (CAV '98), volume 1427, pages 319{331, Vanouver,

Canada, 1998. Springer Verlag.

4. G. Bruns and P. Godefroid. Model Cheking Partial State Spaes with 3-Valued

Temporal Logis. In Proeedings of the 11th Conferene on Computer Aided Veri�-

ation, volume 1633 of Leture Notes in Computer Siene, pages 274{287. Springer

Verlag, July 1999.

5. G. Bruns and P. Godefroid. Generalized Model Cheking: Reasoning about Partial

State Spaes. In Proeedings of CONCUR'2000 (11th International Conferene on

Conurreny Theory), volume 1877 of Leture Notes in Computer Siene, pages

168{182. Springer Verlag, August 2000.

6. R. R. Bryant. Symboli Boolean Manipulation with Ordered Binary-Deision Di-

agrams. ACM Computing Surveys, 24(3):293{318, September 1992.

7. E. M. Clarke, O. Grumberg, and D. E. Long. Model heking and abstration. ACM

Transations on Programming Languages and Systems, 16(5):1512{1542, 1994.

8. R. Cleaveland, P. Iyer, and D. Yankelevih. Optimality in abstrations of model

heking. In SAS'95: Pro. 2d. Stati Analysis Symposium, Leture Notes in Com-

puter Siene 983, pages 51{63. Springer, 1995.

9. J. C. Corbett, M. B. Dwyer, J. Hatli�, S. Laubah, C. S. Pasareanu, Robby, and

H. Zheng. Bandera: Extrating Finite-state Models from Java Soure Code. In

Proeedings of the 22nd Intl' Conferene on Software Engineering, June 2000.

10. P. Cousot and R. Cousot. Abstrat interpretation: a uni�ed lattie model for stati

analysis of programs. In Pro. 4th ACM Symp. on Priniples of Programming

Languages, pages 238{252. ACM Press, 1977.

11. P. Cousot and R. Cousot. Temporal abstrat interpretation. In Conferene Reord

of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Priniples of Pro-

gramming Languages, pages 12{25, Boston, Mass., January 2000. ACM Press, New

York, NY.

12. D. Dams. Abstrat interpretation and partition re�nement for model heking. PhD

thesis, Tehnishe Universiteit Eindhoven, The Netherlands, 1996.

13. D. Dams, R. Gerth, and O. Grumberg. Abstrat interpretation of reative systems.

ACM Transations on Programming Languages and Systems, 19(2):253{291, 1997.

14. S. Das, D. L. Dill, and S. Park. Experiene with Prediate Astration. In

N. Halbwahs and D. Peled, editors, Pro. of the 11th International Conferene

on Computer-Aided Veri�ation, pages 160{172, Trento, Italy, July 1999. Springer

Verlag.

15. E. W. Dijkstra. A Disipline of Programming. Prentie-Hall, Englewood Cli�s,

New Jersey, 1976.

16. P. Godefroid. Model Cheking for Programming Languages using VeriSoft. In

Proeedings of the 24th ACM Symposium on Priniples of Programming Languages,

pages 174{186, Paris, January 1997.



17. S. Graf and H. Saidi. Constrution of abstrat state graphs with PVS. In Grumberg

O., editor, Conferene on Computer-Aided Veri�ation, volume 1254 of Leture

Notes in Computer Siene, pages 72{83, Haifa, Israel, June 1997.

18. M. Hennessy and R. Milner. Algebrai laws for nondeterminism and onurreny.

Journal of the ACM, 32(1):137{161, January 1985.

19. M. Huth, R. Jagadeesan, and D. Shmidt. Modal transition systems: a foundation

for three-valued program analysis. In D. Sands, editor, Proeedings of the European

Symposium on Programming (ESOP'2001), volume 2028 of LNCS, pages 155{169,

Genova, Italy, April 2001. Springer Verlag.

20. P. Kelb. Model heking and abstration: a framework preserving both truth and

failure information. Tehnial Report OFFIS, University of Oldenburg, Germany,

1994.

21. S. C. Kleene. Introdution to Metamathematis. Van Nostrand, 1952.

22. D. Kozen. Results on the propositional mu-alulus. Theoretial Computer Siene,

27:333{354, 1983.

23. K. G. Larsen. Modal Spei�ations. In J. Sifakis, editor, Automati Veri�ation

Methods for Finite State Systems, number 407 in Leture Notes in Computer Si-

ene, pages 232{246. Springer Verlag, June 12{14 1989. International Workshop,

Grenoble, Frane.

24. K. G. Larsen and B. Thomsen. A Modal Proess Logi. In Third Annual Sympo-

sium on Logi in Computer Siene, pages 203{210. IEEE Computer Soiety Press,

1988.

25. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstrations for the veri�ation of onurrent systems. Formal Methods in System

Design: An International Journal, 6(1):11{44, January 1995.

26. R. Milner. An algebrai de�nition of simulation between programs. In 2nd Interna-

tional Joint Conferene on Arti�ial Intelligene, pages 481{489, London, United

Kingdom, 1971. British Computer Soiety.

27. R. Milner. Communiation and Conurreny. Prentie-Hall, 1989.

28. D. M. R. Park. Conurreny and automata on in�nite sequenes. In P. Deussen,

editor, In Pro. of the 5th GI Conferene, volume 104 of Leture Notes in Computer

Siene, pages 167{183. Springer Verlag, 1989.

29. A. Pnueli. Appliations of temporal logi to the spei�ation and veri�ation of

reative systems: a survey of urrent trends. In J. W. de Bakker, editor, Current

Trends in Conurreny, volume 224 of Leture Notes in Computer Siene, pages

510{584. Springer-Verlag, 1985.

30. H. Saidi and N. Shankar. Abstrat and model hek while you prove. In Pro.

of the 11th Conferene on Computer-Aided Veri�ation, number 1633 in Leture

Notes in Computer Siene, pages 443{454. Springer, 1999.

31. T. Sasao. Ternary Deision Diagrams | Survey. In Proeedings of the 27th Inter-

national Symposium on Multi-valued Logi, pages 241{250. IEEE, 1997.

32. W. Visser, S. J. Park, and J. Penix. Using prediate abstration to redue objet-

oriented programs for model heking. In Pro. of Formal Methods in Software

Pratie (FMSP'00), pages 3{12, Portland, Oregon, August 2000.


