Abstraction-based Model Checking
using Modal Transition Systems

Patrice Godefroid®, Michael Huth?, and Radha Jagadeesan*?

1 Bell Laboratories, Lucent Technologies, god@bell-labs.com
2 Computing and Information Sciences, Kansas State University, huth@cis.ksu.edu
3 Department of Computer Science, Loyola University of Chicago, radha@cs.luc.edu

Abstract. We present a framework for automatic program abstrac-
tion that can be used for model checking any formula of the modal
mu-calculus. Unlike traditional conservative abstractions which can only
prove universal properties, our framework can both prove and disprove
any formula including arbitrarily nested path quantifiers. We discuss
algorithms for automatically generating an abstract Modal Transition
System (MTS) by adapting existing predicate and cartesian abstraction
techniques. We show that model checking arbitrary formulas using ab-
stract M'TSs can be done at the same computational cost as model check-
ing universal formulas using conservative abstractions.

1 Introduction

There are essentially two approaches for extending the applicability of model
checking to programs written in general-purpose programming languages such
as C or Java. The first approach consists of adapting existing model-checking
techniques into a form of systematic testing that is applicable to processes ex-
ecuting arbitrary code (e.g., [16]); although sound, this approach is inherently
incomplete for large systems. The second approach consists of automatically
extracting a model out of a program by a static analysis of its code, and of ana-
lyzing this model using existing model-checking techniques (e.g., [1,9]); although
automatic abstraction can be complete, this approach is generally unsound since
abstraction usually introduces unrealistic behaviors that may yield to spurious
errors being reported when analyzing the model.

In this paper, we study the latter approach and show how automatic ab-
straction can be performed in such a way that it yields verification results whose
completeness and soundness can be both guaranteed. We also show how au-
tomatic abstraction can be applied to check arbitrary formulas of the modal
mu-calculus [22], thus including negation and arbitrarily nested path quanti-
fiers. Maybe surprisingly, both extensions can be implemented in combination
with existing abstraction techniques without incurring any significant computa-
tional overhead. Our algorithms could be used to extend the scope of existing
tools for (conservative) automatic abstraction such as SLAM [1] and Bandera [9],

* Supported by NSF CCR-9901071.

which currently support the verification of universal properties only [7]. Our al-
gorithms to construct abstract transition systems can also be used in the context
of the verification of arbitrary modal mu-calculus formulas with methods based
on theorem-proving [30].

Allowing the specification of arbitrary formulas with nested path quantifiers
makes it possible to express more elaborate properties of the temporal behav-
ior of a reactive program, such as “for all possible input values, there exists an
execution path of the system that allows the user to restart the service”. Unfor-
tunately, the verification of such properties necessitates the relation between the
concrete program and an abstract program to be more constraining than a sim-
ulation relation [26,25]. Although bisimulation [28,27] over Labeled Transition
Systems (LTSs) reflects all such general properties [18], it is persuasively argued
in [24, 23] to be ill-suited for our context: as an equivalence relation, it confines
the choice of an abstraction to the implementation’s equivalence class, which is
too limiting to allow for compact abstractions.

For this reason, we use Modal Transition Systems (MTS) [24,23] for rep-
resenting abstract systems in order to allow their specifications to be partially
defined. MTSs are LTSs with two kinds of transitions, termed may and must
transitions, satisfying the consistency condition that every must-transition is
also a may-transition. A MTS can be “refined” by preserving at least all must-
transitions (and maybe adding some) while eliminating some may-transitions.
Since this refinement preorder on MTSs preserves all properties expressible in
the modal mu-calculus, we can verify any such properties on the source (con-
crete) program by verifying these on any abstract MTS that is refined by this
concrete program; conversely, if there exists a behavior of the abstract MTS that
refutes the property, the existence of a refuting behavior of the concrete program
is also immediately guaranteed.

An alternative representation for abstract systems is the partial Kripke struc-
ture [4,5]. Partial Kripke structures are Kripke structures whose states are la-
beled with atomic propositions that can have any of three possible truth values:
true, false or unknown. Partial Kripke structures are closely related to MTSs
since the transition relation of a MTS can be viewed as a function associating
each transition with one of three possible values: must-transitions correspond
to the value true, may-transitions that are not must-transition are mapped to
unknown, and absent transitions render false. It can be shown that any par-
tial Kripke structure can be translated into an equivalent MTS, and vice versa.
This correspondence makes it possible to apply the results of [4,5] (in particu-
lar, model-checking algorithms and complexity bounds) to the context of MTSs.
Conversely, the abstraction techniques developed in this paper can be adapted
to the context of partial Kripke structures.

A crucial aspect of our model-checking framework is that it not only per-
mits the abstraction of complete programs, but also the refinement of partially
specified abstract programs by more concrete abstract programs, to adequately
accommodate the incremental process of building more detailed abstractions by
successive approximations, as used in SLAM or Bandera for instance.

We develop an expressive and flexible relational calculus for the sound spec-
ification of MTSs as abstractions. This calculus adapts the definitions of [12,13]
to partially specified systems and is complete in the sense that it can specify ev-
ery refinement of MTSs. In particular, any abstract interpretation of data values
extends to a relational abstraction expressible in the calculus. In this calcu-
lus, we specify two standard abstractions of abstract interpretation [10], namely
predicate abstraction [17,14,32] and cartesian abstraction [3,1] (also known as
“independent attribute analysis”), and describe their implementations:

— When applied to may-transition relations only, the specifications and imple-
mentations we present coincide with traditional “conservative” abstraction.

— We discuss how these specifications can be implemented using standard tools
(automatic theorem proving for quantifier-free first-order logic and BDDs),
except for the use of Ternary Decision Diagrams (TDDs) [31] for carte-
sian abstraction. We show that the computational cost of constructing a
must-transition relation is the same as that of constructing a may-transition
relation.

— We show that our implementations are sound and (relatively) complete! with
respect to their specifications in our calculus. Moreover, they conveniently
model approximations in calls to a theorem prover as under-approximations
of must-transitions and over-approximations of may-transitions.

— We prove that abstraction refinement is incremental for MTSs built using
cartesian abstraction.

Predicate abstraction [17, 14, 32] is based on a set of predicates, & = {¢1, ..., dn},
typically quantifier-free formulas of first-order logic (e.g. (x == y+1) || (x <
y-5)). An abstract state is induced by n-ary conjunctions, called monomials,
with each predicate ¢; contributing either ¢; or =¢;. This abstraction identifies
concrete states that satisfy the same predicates in @.

Given a set of states represented by a formula of quantifier-free first-order
logic 9, the set ¢’ of abstract may-successors states is defined as the disjunction
of all monomials n such that post(¢))An is satisfiable [17, 14].2 Computing 9’ can
be done using automatic theorem proving for quantifier-free formulas, and [14]
shows how to use a representation based on BDDs [6] at a propositional level
to compactly represent the construction of ¢’ as a disjunction of conjunctions.
We can compute must-transitions by dualizing, in a logical sense, the above
construction: for ¢ as above, we show that the set of must-successors is the
disjunction of all monomials 7 such that ¢ A pfe(—n) is unsatisfiable.?

Unfortunately, this approach is not incremental: adding a new predicate ¢, 1
to @ may not yield a refinement of the abstraction, and hence the entire abstrac-
tion may need to be recomputed. This shortcoming can be eliminated at the
expense of enlarging the abstract state space: states are now built as disjunc-
tions of abstract states from predicate abstraction. Using disjunctions can yield

! Which are perforce relative to the completeness of the underlying theorem prover.
% post (1)) is the set of immediate successor states of states satisfying 1.
3 pte(—) is the weakest precondition of states satisfying —.

a must-component that is more precise than the one obtained from predicate ab-
straction, but can also be much more expensive: for n predicates, an abstraction
using disjunctions can have 22" states. This tradeoff between cost and precision
is discussed in [8].

This limitation motivates the next layer of approximation: cartesian abstrac-
tion, which can be used on top of predicate abstraction in order to approximate
sets of n-tuples by n-tuples of sets. We modify the work of [14] to synthesize
abstract states and abstract may-successors for this composite abstraction, re-
placing BDDs by TDDs [31]. Then we construct must-transitions by dualizing, in
the logical sense, the construction of may-transitions using cartesian abstraction.

We complete this framework with an algorithm for model checking any modal
mu-calculus formula on an abstract MTS. Following [4,5], any (three-valued)
model-checking problem on MTSs can be reduced to two traditional (two-valued)
model-checking problems on regular LTSs.

The rest of the paper is organized as follows. Section 2 discusses background
material on MTSs. Section 3 formally develops a relational calculus of abstrac-
tions and proves a basic result that permits the methods of analysis of this paper.
In Section 4, we apply these methods to predicate and cartesian abstraction and
prove that cartesian abstraction allows for incremental refinement. Section 5
discusses three-valued model-checking for MTSs, and Section 6 concludes.

2 Background: Abstract Modal Transition Systems

MTSs [24, 23] are defined from labeled transition systems.

Definition 1 (Labeled transition systems). A labeled transition system
[27] (LTS) is a tuple K = (Xk,Act,—), where Yk is a set of states, Act
is a set of action symbols, and — C Yk X Act X X is a transition rela-
tion. We call K finitely-branching if for each s € X'k, the set {s' € Yk | Ja €
Act:(s,a,8') € —} is finite.

A strategy to reason about a complex program represented by an LTS C consists
of (i) generating from C an abstract LTS A, (ii) checking whether A satisfies a
behavioral property ¢, and (iii) transferring those results to the original program
C. For (i) and (iii), standard practice [10, 7] is to construct some A such that the
initial states of C and A are related by a simulation.

Definition 2 (Simulation). A relation p C Yo x X4 is a simulation [26] iff
for any cpa and ¢ »% ¢ there is some a' € X4 such that a % a' and ' pad'.

The temporal logic Ly whose abstract syntax is
pumtt| 22| Z |1 Ade | BV | (Va)b | vZ 1)

with a € Act, variables Z € Var for the greatest fixed point vZ.¢, and usual
semantics, expresses universal properties [29]. We assume here the semantics

of (closed) formulas over LTSs is defined as sets of states. For instance, the
semantics of (Va)¢ is:

| Va)p | £ {s € Sk |forall s' € Vg, s -+ s' implies s' € | ¢ [}.

A simulation relation cpa ensures that a € | ¢ | (read “a satisfies ¢”) implies
¢ € | ¢]. Thus, we may verify any universal property ¢ € Ly (such as “For
all paths, nothing bad will happen”) at ¢ by (i) computing an abstract model
A, (ii) establishing a simulation p satisfying cpa, and (iii) verifying ¢ at a.
Unfortunately, a negative check a & | ¢ | does not imply anything about the
truth or falsity of ¢ € | ¢ |. At most, debugging information obtained from such
a negative check may be used to construct a more concrete version of A (a
refinement), hoping that this more precise model either renders a positive check
or that refined debugging information eventually “applies” to C as well.

In this paper, we argue that a better approach consists of using MTSs instead
of LTSs for representing abstractions of LTSs.

Definition 3 (MTS). A MTS [24] is a pair K = (K™t ™) where K™ust
(Y, Act,— and K™ = (Y, Act, — are LTSs such that —
%.

must) may) must g

may *

An LTS is simply a MTS K where K™t equals K™, The intuition behind
the inclusion above is that transitions that are necessarily true (K™"S*) are also
possibly true (™#). Reasoning about the existence of transitions of MTSs can
be viewed as reasoning with a three-valued logic with truth values true, false,
and unknown [4]: transitions that are necessarily true are true, transitions that
are possibly true but not necessarily true are unknown, and transitions that are
not possibly true are false.

Definition 4 (Refinement [24]). An MTS A, is a refinement of an MTS A
if there exists a relation p C X4, X Xa, such that (i) p is a simulation from
AT to AY™ and (ii) p is a simulation from ASSC to APUS. In that case, we
also say that A, is an abstraction of A;. We write < for the greatest refinement
relation between MTSs.

MTSs can be used to both verify and refute any property of the full modal
mu-calculus, which is defined as follows [22]:

pu=tt|Z| ¢ P Aga| (Fa)g | puZ.g (2)
where a € Act, and Z € Var (variable for the least fixed point uZ.¢).

Definition 5 (Semantics of modal logic [19]). For a MTS K and any modal
mu-calculus formula ¢, we define a semantics | ¢ |, € P(Xk) x P(Xk), where
P(Xk) is the powerset of Yk, ordered by set inclusion, o:Var — P(Xk) x
P(Xk) is an environment, and | ¢ |2°¢ and | ¢ [P°° are the projection of | ¢ |+
to its first and second component, respectively:

def

1. Htt [lfT = (EK, 2K>;

2. [0l = (Zx\ 1%, T \[o15);

3 i Age o = ([o [N b2 [5° [d1 [5° N[h2 [

4.1 @a)o |, € ({s € Dk | for some s', s =2 . 8" and s' € | ¢ [2*°},
{s € Xk | for some s', s =% . s and s" € ¢ [2°°}).

may

The treatment of negation is due to P. Kelb [20] and allows for verifying (s €
[¢ [™¢) and refuting (s € | —¢ |**¢) property ¢ at state s. For brevity, we did
not present the standard least-fixed point semantics of uZ.¢ (e.g., see [19]).

Theorem 1 (Soundness and consistency of semantics [19]). For any
MTSs, formulas ¢,v of the modal mu-calculus, and environments o:

Lo CloR;

2. pA-¢ 2 =0; and | ¢V —¢ |2 = Xk, that is, the semantics is consis-
tent for | |"°¢ and “complete” for | [P°S;

3. if c<a, then a € | ¢ [2°¢ implies ¢ € | ¢ |2°¢; and ¢ € | ¢ |2 implies a €
[¢ |2°%; that is, verification and refutation of ¢ are sound;

4. For LTSs, | ¢ |[2°¢ =] ¢ [2°° and corresponds to the standard semantics for
labeled transition systems.

The semantics | ¢ [*¢¢ (without negation and fixed points) is the one given
by Larsen [23]; it produces a logical characterization of refinement for finitely
branching® MTSs [23]. Since s & | ¢ [P* iff s € | =¢ [, this logical characteri-
zation can be extended to the full mu-calculus (including negation). We thus ob-
tain that c<a iff for all ¢ of the modal mu-calculus, [a € | ¢ [**¢ = ¢ € | ¢ [**°].

3 A Relational Calculus for Abstract MTSs

In [12], abstract interpretation frameworks are systematically defined through
description relations p: Yo x X4 with suitable properties. We provide a general
calculus for specifying abstract MTSs based on such relations.

Definition 6 (Relational abstraction). Let A; = (A", A7) be an MTS.

Given a set X4, of abstract states and a total relation® p: Xa, x Xa,, we define
must ma,

Ay = (Xa,,Act, —, —) as follows:

— Ay >%us @y iff for all ax € X4, with ay pay there exists ay € X4, such that
ay pay and ay =g 0

— Q3 —may 05 iff there exist a1 € Y4, and ay € Y, such that ai pas, a) pay,
and ay =, @) .

This definition is a tool to specify abstract MTSs. Its two components are sim-
ilar to the universal abstraction o= and the (dual) existential abstraction a7
defined in [11], and to the relations R"2 and R in [12].

* may-components and must-components are finitely-branching.

® That is, (Va1 € ¥a,3a2 € Ta,:a1 pas) A Vaz € Ta,3a1 € Xa,: a1 paz).

Lemma 1. Given A; and Ay as above, As is a MTS and p is a refinement.

Totality is a natural condition in applications and Definition 6 can express step-
wise abstractions, products, sums, etc; moreover, it translates to other frame-
works — e.g. the one based on Galois connections [10] — in the manner described
in [12].

The specification in Definition 6 is also complete: given an MTS A;, any
abstraction A, of A; via a total refinement relation < can be constructed using
Definition 6 by choosing p as <. The following example illustrates Definition 6.

Ezample 1. Let A; be a complete MTS (A" equals APSY) whose infinite
state space is given by all possible valuations of three integer variables x, y,
and z. Any state ¢ is of the form {x — i,y — j,z — k}, for some integers
i,j,k. Let us assume that transitions of A; are those induced by the single
assignment statement x = z, e.g. there is a transition from state ¢ above to
state ¢/ = {x — k,y — j,z — k}.

The predicates ¢; = odd(x), p2 = (y > 0), and ¢3 = (z < 0) induce an
equivalence relation on the states of Aj;: two states are equivalent if they agree
on all three predicates. Let X4, be the set of all sets of equivalence classes of
states of A;. Therefore, states of A, are representable as boolean formulas built
from the ¢;’s. By Definition 6, there is a may-transition from a to a’ in X4, iff
there are ¢ € a and ¢’ € o' such that ¢ has a transition to ¢’ in 4;. Dually, there
is a must-transition from a to a’ iff, for all ¢ € a, there exists ¢’ € a’ such that
¢ has a transition to ¢’ in A;.

For instance, there is (i) a may-transition from the state ¢1 A ¢2 A ¢3 to the
states ¢1 A d2 A 3 and —dy A ¢o A ¢3; (ii) a must-transition from ¢ A ¢a A ¢3 to
the disjunction of monomials (¢1 A @2 A d3) V (md1 A P2 A ¢3); but (iii) no must-
transition from ¢; A @3 A ¢3 to any monomial, e.g. @1 A d2 A 3 or =1 A 2 A Ps3.

4 Implementation of Relationally Specified MTSs

In this section, we consider in turn predicate abstraction (also called “boolean
abstraction”) and cartesian abstraction. When applied to may-transition rela-
tions only, the specifications and implementations we present coincide with tra-
ditional “conservative” abstractions. We implement these specifications with
standard tools (automatic theorem-proving for quantifier-free first-order logic
and BDDs), except for the use of TDDs. We show that the computational cost
of constructing a must-transition relation is the same as that of constructing a
may-transition relation. We then show that our implementations are sound and
complete (relatively to the completeness of the underlying theorem prover) with
respect to their specifications. Moreover, they conveniently model approxima-
tions in calls to a theorem prover as under-approximations of must-transitions
and over-approximations of may-transitions. Importantly, we prove that abstrac-
tion refinement is incremental for MTSs built using cartesian abstraction.

Notation. For any predicate 17 on a set Xg of states, for any label « € Act, the
post operator [10] and weakest precondition [15] are defined as

post () Z {s' € ¥s|Is € Vs: s =1, s =% '}

~ def

pre, (n) = {s € g |Vs' € Tg: s = &' implies s’ = n}.

These operators satisfy several interesting relationships [10]. Here we only use
the property that, for any predicates n, on states, post, () A i is satisfiable
if and only if ¢ A —pte, (—n) is satisfiable.

Methodological assumptions. We assume that an abstract program is built by
converting each program statement from a transformer operating on concrete
states to a transformer operating on abstract states, as illustrated in Example 1.
For notational convenience, we focus in what follows on the abstraction of a
single program statement, and hence consider MTSs, post, and pre without ex-
plicit action labels. For a given program statement and a quantifier-free formula
n, we assume that pte(n) is quantifier-free as well. This is the case for usual pro-
gramming language constructs [17] and enables the use of decision procedures
as implemented in tools such as SVC [14].

Predicate Abstraction. Predicate abstraction [17,14, 32] collapses an infinite-
state LTS into a finite-state MTS defined by choosing finitely many quantifier-
free formulas of first-order logic.

Specification. The abstract states in the predicate abstraction are built out of
monomials over predicates. Each abstract state corresponds to a set of concrete
states that satisfy the same set of predicates. Formally, given a finite set of
quantifier-free formulas of first-order logic, & = {¢1,¢2,...,0,}, and a “bit-
vector” b € {0,1}", we write (b, ®) for a monomial whose ith conjunct is ¢; if
b; = 1, and —¢; otherwise.

Definition 7 (Predicate abstraction). Given an LTS S and a finite set =
{b1, P2, ..., 0n} of quantifier-free formulas of first-order logic, we derive a finite-
state abstract MTS By following Definition 6 (A, is S and As is Bs) in such a
way that:

—-pE pL C Xg x {0,1}", where s pL b iff s = (b, ®); and
~ X, E{b€{0,1}" | spt b for some s € Xg}, which makes pf total.
Implementing may-successors of a predicate abstraction. Current tool-supported
predicate-abstraction frameworks [17,14,32,9,2, 1] can be viewed as construct-
ing an abstraction of the may-component of Bg defined above. We now review
how to compute the set of abstract may-successors for a single program state-
ment.
Following [14], we use BDDs over boolean variables z1, zs,...,z, as repre-
sentations of such sets. If ¢ is a boolean combination of {¢; | m < i < n}, we
compute in (3) below a BDD, denoted by H™ (¢, true, m), for representing the

set of may-successors of ¢. The definition of H™?# is essentially the definition of
H in [14] where post(1)) A7 is replaced by 1 A —pte(—-n) (to facilitate dualizing
this construction later).

(@i NH™¥ (), A byt + 1))
Hmay(w n l) d:ef V("iE,'/\Hma‘y(w,T}/\—'¢i,i+1)) 1f0<z§n,
e 1 if i =n +1 and ¢ A —pre(-m) is satisfiable,
0 if i =n +1 and ¢ A —pre(-m) is unsatisfiable.

(3)

The BDD in (3) can be computed using standard BDD operations [6] plus the
optimizations discussed in [14], while the satisfiability checks can be computed
by calling a theorem prover. Unwinding the recursion in the definition above, it
is clear that the set of may-successors of ¢ computed by H™® is:

next ()1 = {b' € Yp | ¢ A -pre(=(b', d)) is satisfiable }. (4)

Implementing must-successors of a predicate abstraction. The logical duality of
may versus must is captured by replacing the satisfiability check of ¢ A —pfe(—m)
in (3) by the unsatisfiability check of ¢ A pfe(—m) in the following equation (5).

(wi A H™ (b, A ¢iyi + 1))

V(=g A H™US (o) g A =gy, i+ 1)) if 0 <i<n, 5
1 if i =n +1 and 9 A pte(—n) is unsatisfiable, (5)
0 if i =n+1 and v A pte(—m) is satisfiable.

H™S (4, i) =

Thus, the set of must-successors of 1) represented by the BDD H™ (¢, true, m)
is:
next(¢)Ut = (' € Yy |9 A pre(—(b',®)) is unsatisfiable }. (6)

We now show that the BDDs computed by H™% and H™"! represent exactly
the transitions specified in Definition 7.

Theorem 2 (Soundness and completeness).

— b=y U inBs iff b € next((b,B)[Y;
b b inBe iff Ve next((b,@))g‘“t.

must

Proof. The proof follows from the direct application of the definitions and is
omitted here due to space constraints.

Cost. In the worst case, the computation of H™® ((b, &), true, m) makes O(2")
calls to the theorem prover. Similarly, the computation of H™((b, &), true, m)
makes at most O(2") calls to the theorem prover. Hence, the complezity of com-
puting H™U s the same as the complexity of computing H™

Note that optimizations for computing H™# discussed in [14] can also be
used when computing H™"*. Our algorithm also accommodates the complex-
ity of theorem-proving by allowing the sound over-approximation of H™# and

under-approximation of H™Ut as follows: in both cases, simply convert the ab-
sence of an answer, when truncating the computation performed by the satisfi-
ability checker, into “satisfiable”.

Predicate-Cartesian Abstraction. Unfortunately, predicate abstraction of
MTSs is not incremental: adding a new predicate ¢,4+1 to @ may not yield a
refinement of the abstraction, and hence the entire abstraction may need to be
recomputed. This is illustrated by the following example.

Ezample 2. Revisiting Example 1, if & = {¢2, ¢3}, then Bg has four states, each
with a must-transition to itself. However, adding the predicate ¢; to @, there
are no must-transitions from the abstract state ¢1 A ¢o A ¢3 (111) in By yus-
This is quite unfortunate: the information about variable y is lost even though
y is absent from the assignment x = z. But in Example 1 we saw that there is a
must-transition from ¢, Ags A3 to the disjunction (g1 Ada Ap3)V (o1 Ada Ap3)
that correctly captures the “absence of effect” on y.

Computing must-transitions with abstract states of the above kind can be ex-
pensive: given n predicates, there are a possible 22" such states. This motivates
our next topic: cartesian abstraction.

Specification. The basic idea behind cartesian abstraction is to approximate
sets of tuples by a tuple of sets. For instance, a set {(0,1),(1,1)} is represented
by {(x,1)}, where « is used as a wildcard for different values (such as 0 and 1 in
this example). Formally, given a finite set & = {¢1, ¢2, ..., ¢, } of quantifier-free
formulas of first-order logic and a “tri-vector” ¢ € {0,1,x}", we write (c,) for
a monomial whose ith conjunct is ¢; if ¢; = 1, =¢; if ¢; = 0, and true otherwise.
Abstract states in Cg are built out of “tri-vectors” of length n.

Definition 8 (Predicate-cartesian abstraction). Given an LTS S and a
finite set & = {p1, P2, .., Pn} of quantifier-free formulas of first-order logic, we
derive a finite-state abstract MTS Cg following Definition 6 (Ay is S and As is
Cg) in such a way that:

- pd:'EfpfOpfgﬂgx{O,l,*}”, where bpc iff Vi<i<n:[c;#x = b=
¢il; and

— Yo, E{ce{0,1,x}" | bp®c for some b € Tp,}, which makes p¢ total.

The symbol * means “don’t care” in the above definition. It is easy to show that,
by construction, we have:

s@pPopl)e i sk (). (7)

Note that the abstract MTS Cj obtained by abstracting Bs (whose states
are vectors of n-bits) with p? is typically less precise than Cg. For instance, in
the case of Examples 1 and 2 again, C; would not contain any must-transition
from state 111 (i.e., ¢1 A ¢p2 A ¢3), while Cg does contain a must-transition from
111 to state %11.

The MTS Cg supports an approximate union operation, defined using the point-
wise application of Kleene’s alignment operator [21]: cUc = ¢, where cf =¢if
¢; = ¢ and x otherwise. This operation thus approximates disjunctions (sets) of
monomials by tri-vectors. As previously mentioned, cartesian abstraction allows

for incremental abstraction refinement:

Theorem 3 (Incremental refinement). For & = {¢1,¢2,...,¢,} and ¥ =
S U {dnt1,Pnt2,s---» Ontm], the MTS Cy is a refinement of the MTS Cg.

Proof. The refinement p C Y, X X, is given by {(¢/,¢) | ¢ is a prefix of ¢'}.

Implementing may-successors of a predicate-cartesian abstraction. Instead of rep-
resenting the abstract post-operator with a BDD as in the predicate abstraction
case, we now use a Ternary Decision Diagram [31], writing [z/v] for the replace-
ment of variable z with value v € {0,1, %}:

([[AAG™¥ (,nAGi, i + 1)V ([2: /OJAGT® (4, n A= i, i + 1))
V([zi [X]NG™ (¢, m, i + 1)) if0<i<m,

1 if i =n+1 and ¥ A —pTe(—n) is satisfiable,

0 if i =n+1 and ¢ A ~pre(—n) is unsatisfiable.

G™ (4, n,i) =

(8)
The function G™# essentially computes the abstract post-operator of SLAM [1].
Unwinding the recursion in the above definition, the set of may-successors of i

represented by the TDD G™ (1, true, m) is:
next (1)) = {¢' € X | A —pre(—(c’,d)) is satisfiable }. 9)

Implementing must-successors of a predicate-cartesian abstraction. The TDD
G™must () true,m), defined below, represents the set of must-successors of 1. Sim-
ilar to our presentation of predicate abstraction, we are capturing the logical
duality of may versus must by replacing the satisfiability check of ¢ A —pZe(-n)
by the unsatisfiability check of ¢ A p¥e(—mn) in the following equation:

([z: /1] AG™ 5" (tz/),n/\qﬁi, i+ 1))V([mi/0]AGm“St(¢,17/\—|¢i, i+1))
Grust(y g gy 2t V{EANG Wy mpi k) 0 <i<n,
b 1 if i =n+ 1 and ¥ A pte(—n) is unsatisfiable,
0 if i =n+ 1 and ¥ A pre(—n) is satisfiable.
(10)
Again, by unwinding the recursion, the set of must-successors of v represented
by the TDD G™Ust (3, true,m) is thus defined by:

next(¢) 1t = (¢ € Yo | b A pre(—(c/,®)) is unsatisfiable }. (11)
The following theorem states that the TDDs computed by G™& and G™Ust
represent exactly the transitions specified in Definition 8.
Theorem 4 (Soundness and completeness).

= € may ¢ Co iff ¢ €mnext((c,)
— ¢t € inCo iff ¢ € next((c,P))nust.

Proof. Similar to the proof of Theorem 2.

Cost. In the worst case, the computation of G™¥ ({¢, @), true, m) makes O(3")
calls to the theorem prover. Similarly, the computation of G™t({¢, &), true, m)
makes at most O(3"™) calls to the theorem prover. Therefore, the complezity of
computing G™t is the same as the complezity of computing G™3 .,

Note that the heuristics discussed in [1] for approximating the calculation
of G™® ({¢,P),true,m) by restricting the expansion of the recursion to a fixed
depth (rather than n) can be applied when computing G™¢({c, ®), true, m) as
well. Again, the absence of answers from the theorem prover for satisfiability
checks can be interpreted as “satisfiable” to yield a sound over-approximation
of G™# and under-approximation of G™USt,

5 Three-valued Model Checking on MTSs

The automatic-abstraction algorithms of the previous section can be used to
generate a MTS A, which, by construction, is guaranteed to be an abstraction
(as defined in Definition 4) of a given, possibly initial and concrete, system Aj.
By Theorem 1, we can check a modal mu-calculus formula ¢ on A; by analyzing
A, instead, resulting in three possible answers: either (i) ¢ is necessarily true
on A; — its initial state is contained in | ¢ [**© — and hence ¢ holds for 4
(the answer is true), or (ii) ¢ is only possibly true on A, — its initial state
is contained in | ¢ [P°* only — and whether ¢ holds on 4; is unknown (the
answer is unknown), or (iii) ¢ is not possibly true on 4, — its initial state is
not contained in | ¢ [P — and ¢ does not hold on 4; (the answer is false).
We are thus left with a three-valued model-checking problem on MTSs which,
following [5], can be reduced to two model-checking problems on LTSs as follows.

First, we rewrite formula ¢ to a formula ¢ in positive normal form defined
over all the clauses of (1) plus (2) by pushing all negations in ¢ inwards so that
they apply only to tt or £f in ¢*. This is done using the classic rewrite rules:
g = ¢, (1 A o) = (261) V (7¢2), ~((3a)¢) = (Va)(=¢), and ~(uZ.¢) =
vZ.(—¢). Then, we translate ¢T into a formula T'(¢) by applying the following
translation rules: for all a € Act, replace all occurrences of (V) in ¢ by (Vay)
and replace all occurrences of () in ¢ by (Jaz).

Second, from the MTS Ay = (X4,,Act, — we define two LTSs
AS® and Agpt, representing respectively the pessimistic and optimistic inter-
pretations of Ay (see [5]). These two LTSs are defined over the set

_>

must? may);

Act® = {ay | a € Act} U {as | a € Act} (12)
of action symbols. Precisely, we define AY*™* = (X4, ,Act®, —pess) With

(s5,0y,8") € = pegs if (s,0,5") € =0 (13)

(5,03,8") € = eqs If (5,0,58") € = 06 (14)
and we define ASP" = (X4, Act®, —,,) with

s,ay,8) € =g if (5,0,8) € = (15)

(
(

s5,03,8') € =g if (s,0,8") € = 0 (16)

Finally, we model-check the modal mu-calculus formula 7'(¢) on the LTSs AY**
and AS”*, and combine the results as specified in the following theorem.

Theorem 5 (Correctness of model checking algorithm). Given a MTS
As and a modal mu-calculus formula ¢, let T(¢), AS***, and Agp“ be the formula
and the two LTSs (respectively) as defined above. For any state s € X a,, we then
have

1. s €] ¢ [iff (A5, s) =T (¢)
2. s €] [P iff (A", 5) = T(6).

Proof. By induction on the structure of ¢.

The previous theorem is similar to Theorem 3 of [5]. It reduces three-valued
model checking of MTSs to two traditional (two-valued) model-checking prob-
lems on regular LTSs, namely (A5 s) = T'(¢) and (ASP',s) |= T(¢). Since
the transformations performed to obtain T'(¢), (A5**,s), and (A, s) can be
done in constant space and time linear in the size of the formula and MTS re-
spectively, three-valued model checking on MTSs has the same time and space
complexity as two-valued model checking on LTSs. Moreover, the problem can be
solved in practice using existing model-checking tools for LTSs, with all the op-
timizations that these tools may already implement. In particular, if the refined
system A; is concrete and composed of multiple concurrent LTSs or of recursive
procedures (LTSs extended with a “call-stack”), the abstraction algorithms of
the previous section will preserve the architecture of 4; when generating Ao,
and existing tools for model-checking concurrent or pushdown systems can be
applied to A and ASP".

6 Conclusions

We developed a framework for automatic program abstraction based on modal
transition systems. This framework can be used for model-checking any formula
of the modal mu-calculus, and is also applicable to the verification of concur-
rent and pushdown systems. It uses cartesian abstraction, implemented with
TDDs and quantifier-free first-order-logic theorem-proving, to extend existing
predicate-abstraction techniques to the verification of formulas containing ar-
bitrarily nested path quantifiers. Cartesian abstraction has no significant cost
overhead and is compatible with the standard incremental refinement process
for adding more predicates.

Acknowledgments

We wish to thank Glenn Bruns and David Schmidt for inspiring discussions and
helpful comments.

References

1.

10.

11.

12.

13.

14.

15.

16.

T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for
Model Checking C Programs. In T. Margaria and W. Yi, editors, Proceedings of
TACAS’2001, volume 2031 of LNCS, pages 268-283, Genova, Italy, April 2001.
Springer Verlag.

T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In Proceedings of the Seventh International SPIN Workshop (SPIN 2000),
volume 1885, pages 113-130. Springer Verlag, 2000.

S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions on infinite state
systems compositionally and automatically. In A. J. Hu and M. Vardi, editors,
Computer Aided Verification (CAV ’98), volume 1427, pages 319-331, Vancouver,
Canada, 1998. Springer Verlag.

G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued
Temporal Logics. In Proceedings of the 11th Conference on Computer Aided Verifi-
cation, volume 1633 of Lecture Notes in Computer Science, pages 274-287. Springer
Verlag, July 1999.

G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial
State Spaces. In Proceedings of CONCUR’2000 (11th International Conference on
Concurrency Theory), volume 1877 of Lecture Notes in Computer Science, pages
168-182. Springer Verlag, August 2000.

R. R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Di-
agrams. ACM Computing Surveys, 24(3):293-318, September 1992.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512-1542, 1994.

R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model
checking. In SAS’95: Proc. 2d. Static Analysis Symposium, Lecture Notes in Com-
puter Science 983, pages 51-63. Springer, 1995.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting Finite-state Models from Java Source Code. In
Proceedings of the 22nd Intl’ Conference on Software Engineering, June 2000.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs. In Proc. 4th ACM Symp. on Principles of Programming
Languages, pages 238-252. ACM Press, 1977.

P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 12-25, Boston, Mass., January 2000. ACM Press, New
York, NY.

D. Dams. Abstract interpretation and partition refinement for model checking. PhD
thesis, Technische Universiteit Eindhoven, The Netherlands, 1996.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2):253-291, 1997.
S. Das, D. L. Dill, and S. Park. Experience with Predicate Astraction. In
N. Halbwachs and D. Peled, editors, Proc. of the 11th International Conference
on Computer-Aided Verification, pages 160-172, Trento, Italy, July 1999. Springer
Verlag.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

P. Godefroid. Model Checking for Programming Languages using VeriSoft. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages,
pages 174-186, Paris, January 1997.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Grumberg
0., editor, Conference on Computer-Aided Verification, volume 1254 of Lecture
Notes in Computer Science, pages 72—-83, Haifa, Israel, June 1997.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137-161, January 1985.

M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: a foundation
for three-valued program analysis. In D. Sands, editor, Proceedings of the European
Symposium on Programming (ESOP’2001), volume 2028 of LNCS, pages 155-169,
Genova, Italy, April 2001. Springer Verlag.

P. Kelb. Model checking and abstraction: a framework preserving both truth and
failure information. Technical Report OFFIS, University of Oldenburg, Germany,
1994.

S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-354, 1983.

K. G. Larsen. Modal Specifications. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, number 407 in Lecture Notes in Computer Sci-
ence, pages 232-246. Springer Verlag, June 12-14 1989. International Workshop,
Grenoble, France.

K. G. Larsen and B. Thomsen. A Modal Process Logic. In Third Annual Sympo-
stum on Logic in Computer Science, pages 203-210. IEEE Computer Society Press,
1988.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design: An International Journal, 6(1):11-44, January 1995.

R. Milner. An algebraic definition of simulation between programs. In 2nd Interna-
tional Joint Conference on Artificial Intelligence, pages 481-489, London, United
Kingdom, 1971. British Computer Society.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

D. M. R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, In Proc. of the 5th GI Conference, volume 104 of Lecture Notes in Computer
Science, pages 167-183. Springer Verlag, 1989.

A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In J. W. de Bakker, editor, Current
Trends in Concurrency, volume 224 of Lecture Notes in Computer Science, pages
510-584. Springer-Verlag, 1985.

H. Saidi and N. Shankar. Abstract and model check while you prove. In Proc.
of the 11th Conference on Computer-Aided Verification, number 1633 in Lecture
Notes in Computer Science, pages 443—-454. Springer, 1999.

T. Sasao. Ternary Decision Diagrams — Survey. In Proceedings of the 27th Inter-
national Symposium on Multi-valued Logic, pages 241-250. IEEE, 1997.

W. Visser, S. J. Park, and J. Penix. Using predicate abstraction to reduce object-
oriented programs for model checking. In Proc. of Formal Methods in Software
Practice (FMSP’00), pages 3-12, Portland, Oregon, August 2000.

