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Abstract. We discuss the problem of model checking temporal proper-

ties on partial Kripke structures, which were used in [BG99] to represent

incomplete state spaces. We �rst extend the results of [BG99] by showing

that the model-checking problem for any 3-valued temporal logic can be

reduced to two model-checking problems for the corresponding 2-valued

temporal logic. We then introduce a new semantics for 3-valued tem-

poral logics that can give more de�nite answers than the previous one.

With this semantics, the evaluation of a formula � on a partial Kripke

structure M returns the third truth value ? (read \unknown") only if

there exist Kripke structures M

1

and M

2

that both complete M and

such that M

1

satis�es � while M

2

violates �, hence making the value

of � on M truly unknown. The partial Kripke structure M can thus be

viewed as a partial solution to the satis�ability problem which reduces

the solution space to complete Kripke structures that are more complete

thanM with respect to a completeness preorder. This generalized model-

checking problem is thus a generalization of both satis�ability (all Kripke

structures are potential solutions) and model checking (a single Kripke

structure needs to be checked). We present algorithms and complexity

bounds for the generalized model-checking problem for various temporal

logics.

1 Introduction

Many approaches have been proposed to deal with the problem of model checking

large state spaces, among them partial-order methods, symbolic veri�cation, and

abstraction techniques. But often these approaches do not su�ce. Lacking a

means to model check the entire state space of a system, one may settle for

considering only part of the state space, hoping errors can be found there. The

selection of a part of the state space can be done in various ways: randomly,

breadth-�rst, according to general heuristics (i.e. prefer states in which process

queues are �lling), or according to what could be called \ad-hoc abstraction", in

which one ignores certain states, or certain details of states, believed irrelevant

to the property of interest.

?

This is an extended abstract, with proofs omitted. For the full version of the paper

see www.bell-labs.com/�fgrb,godg



The result of applying traditional model checking to such a \partial state

space" will show that a property does or does not hold. However, one would like

the partiality of the state space to be taken into account. Thus, a search should

return true if the property de�nitely holds because of information in the partial

state space, false if the property de�nitely fails to hold because of information

in the partial state space, and unknown (denoted ?) if the truth or falsity of the

property depends on information not contained in the partial state space.

In [BG99] partial Kripke structureswere used to represent partial state spaces.

A completeness preorder was de�ned for partial Kripke structures, a 3-valued

temporal logic for reasoning about such structures was de�ned, and this logic

was shown to characterize the completeness preorder. A corollary of the char-

acterization result is that interpreting a formula on a more complete Kripke

structure will give a more de�nite result.

In this paper, we �rst extend the results of [BG99] by showing that the model-

checking problem for 3-valued temporal logic can be reduced to two model-

checking problems for the corresponding 2-valued temporal logic. Speci�cally,

we show that any partial Kripke structure can be completed into two \extreme"

complete Kripke structures, called the optimistic and pessimistic completions,

and that model-checking a partial Kripke structure can be reduced to model-

checking its optimistic and pessimistic completions. This implies that the prob-

lem of model-checking partial state spaces can be solved using existing tools.

The 3-valued semantics of [BG99] does not behave exactly as one might

expect. Informally, one would like the model checking algorithm to return value

? for a partial Kripke structure and a formula only if there exist a more complete

structure for which the formula is true and another more complete structure for

which the formula is false. However, by the 3-valued semantics of [BG99], it is

possible to get result ? even though only results ? and true can be obtained

when making the given structure more complete.

We introduce in this paper a new semantics that gives value ? only when

there exist a more complete structure for which the formula holds and a more

complete structure for which the formula does not hold. The main question

we consider is whether model checking under this semantics is more expensive

than model checking under the semantics given in [BG99]. We give algorithms

and complexity bounds for several temporal logics showing that it is indeed

more expensive. The problem of model checking under the new semantics is

interesting on its own because it generalizes the problems of model checking

and of satis�ability checking. Solving the problem means determining if some

structure more complete than a given structure satis�es a formula. If the given

structure is fully incomplete, the problem reduces to satis�ability checking. If

the given structure is fully complete, the problem reduces to model checking.

2 Two-valued Modal Logics

In this section we brie
y review Kripke structures and propositional modal logic

(PML). Let P be a nonempty �nite set of atomic propositions.



De�nition 1. A Kripke structure M is a tuple (S;L;R), where S is a set of

states, L : S � P ! ftrue; falseg is an interpretation that associates a truth

value in ftrue; falseg with each atomic proposition in P for each state in S, and

R � S � S is a transition relation on S.

For technical convenience we require of every Kripke structure that its tran-

sition relation be total, i.e., that every state has an outgoing transition. We also

assume that the number of outgoing transitions from a state is �nite. We write

(M; s) to refer to state s of Kripke structure M , or just s if the structure to

which s belongs is clear. Also, we write s! s

0

as shorthand for (s; s

0

) 2 R.

PML (e.g, see [Var97b]) is propositional logic extended with the modal op-

erator 2. Intuitively, formula 2� holds at a state s if � holds at all states that

can be reached from s in a single transition. Formulas of PML have the following

abstract syntax, where p ranges over P :

� ::= p j :� j �

1

^ �

2

j 2�

De�nition 2. The satisfaction of a formula � of PML in a state s of a Kripke

structure M = (S;L;R), written (M; s) j= �, is de�ned inductively as follows:

(M; s) j= p if L(s; p) = true

(M; s) j= :� if (M; s) 6j= �

(M; s) j= �

1

^ �

2

if (M; s) j= �

1

and (M; s) j= �

2

(M; s) j= 2� if (M; s

0

) j= � for all s

0

such that s! s

0

We de�ne �

1

_ �

2

as :(:�

1

^ :�

2

) and 3� as :(2:�).

PML can be used to de�ne an equivalence relation on states of Kripke struc-

tures: two states are equivalent if they satisfy the same set of formulas of the

logic. It is well known [HM85] that the equivalence relation induced in this way

by PML coincides with the notion of bisimulation relation [Mil89, Par81].

De�nition 3. Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be Kripke struc-

tures. The bisimilarity relation � is the greatest relation B � S

1

�S

2

such that

(s

1

; s

2

) 2 B implies the following:

{ 8p 2 P : L(s

1

; p) = L(s

2

; p),

{ if s

1

! s

0

1

then there is some s

0

2

2 S

2

such that s

2

! s

0

2

and (s

0

1

; s

0

2

) 2 B, and

{ if s

2

! s

0

2

then there is some s

0

1

2 S

1

such that s

1

! s

0

1

and (s

0

1

; s

0

2

) 2 B.

The following result (from [HM85]) shows that PML logical characterizes the

bisimulation preorder: two states are bisimilar just if they satisfy the same set

of PML formulas.

Theorem4. [HM85] Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be Kripke

structures such that s

1

2 S

1

and s

2

2 S

2

, and let � denote the set of all PML

formulas. Then

s

1

� s

2

i� (8� 2 � : [(M

1

; s

1

) j= �] = [(M

2

; s

2

) j= �]):



3 Partial Kripke Structures and Three-valued Modal

Logic

3.1 Background

In this section we present background information on partial Kripke structures

and a 3-valued modal logic interpreted over them. The de�nitions and results of

this section come from [BG99].

We model partial state spaces as partial Kripke structures, in which propo-

sitions can take a third truth value ?. We then de�ne a 3-valued modal logic

whose semantics is de�ned with respect to partial Kripke structures. We pro-

ceed by presenting an equivalence relation and preorder implicitly de�ned by

this logic. As before, let P be a nonempty �nite set of atomic propositions.

De�nition 5. A partial Kripke structure M is a tuple (S;L;R), where S is a

set of states, L : S � P ! ftrue;?; falseg is an interpretation that associates a

truth value in ftrue;?; falseg with each atomic proposition in P for each state

in S, and R � S � S is a transition relation on S.

A standard Kripke structure is a special case of partial Kripke structure. We

sometimes refer to standard Kripke structures as complete Kripke structures to

emphasize that no propositions within them take value ?.

In interpreting propositional operators on partial Kripke structures we use

Kleene's strong 3-valued propositional logic [Kle87]. In this logic ? is understood

as \unknown whether true or false". A simple way to de�ne conjunction (resp.

disjunction) in this logic is as the minimum (resp. maximum) of its arguments

under the truth ordering on truth values, in which false is less than ? and ? is

less than true. We write `min' and `max' for these functions, and extend them

to sets in the obvious way, with min(;) = true and max(;) = false. We de�ne

negation using the function `comp' that maps true to false, false to true, and

? to ?. These functions give the usual meaning of the propositional operators

when applied to values true and false.

De�nition 6. The value of a formula � of 3-valued PML in a state s of a partial

Kripke structure M = (S;L;R), written [(M; s) j= �], is de�ned inductively as

follows:

[(M; s) j= p] = L(s; p)

[(M; s) j= :�] = comp([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = min([(M; s) j= �

1

]; [(M; s) j= �

2

])

[(M; s) j= 2�] = min(f[(M; s

0

) j= �] j s! s

0

g)

This semantics generalizes the 2-valued semantics for PML.

This 3-valued logic can be used to de�ne a preorder on partial Kripke struc-

tures that re
ects their degree of completeness. Let � be the information order-

ing on truth values, in which ? � true, ? � false, x � x (for all x 2 ftrue;?



; falseg), and x 6� y otherwise. The operators comp, min and max preserve in-

formation: if x � x

0

and y � y

0

, we have comp(x) � comp(x

0

), min(x; y) �

min(x

0

; y

0

), and max(x; y) � max(x

0

; y

0

).

De�nition 7. Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be partial Kripke

structures. The completeness preorder � is the greatest relation B � S

1

� S

2

such that (s

1

; s

2

) 2 B implies the following:

{ 8p 2 P : L(s

1

; p) � L(s

2

; p),

{ if s

1

! s

0

1

then there is some s

0

2

2 S

2

such that s

2

! s

0

2

and (s

0

1

; s

0

2

) 2 B, and

{ if s

2

! s

0

2

then there is some s

0

1

2 S

1

such that s

1

! s

0

1

and (s

0

1

; s

0

2

) 2 B.

Intuitively, s

1

� s

2

means that s

1

and s

2

are \nearly bisimilar" except that the

atomic propositions in state s

1

may be less de�ned than in state s

2

. Obviously,

s

1

� s

2

implies s

1

� s

2

. Also, any partial Kripke structure can be completed to

obtain a complete Kripke structure.

The following result shows that 3-valued PML logically characterizes the

completeness preorder.

Theorem8. [BG99] Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be partial

Kripke structures such that s

1

2 S

1

and s

2

2 S

2

, and let � be the set of all

formulas of 3-valued PML. Then

s

1

� s

2

i� (8� 2 � : [(M

1

; s

1

) j= �] � [(M

2

; s

2

) j= �]):

In other words, partial Kripke structures that are \more complete" with

respect to � have more de�nite properties with respect to �, i.e., have more

properties that are either true or false. Moreover, any formula � of 3-valued

PML that evaluates to true or false on a partial Kripke structure has the same

truth value when evaluated on any more complete structure.

Results similar to those of this section were presented also for extended tran-

sition systems in [BG99]. Extended transition systems are labelled transition

systems with a divergence predicate on states (e.g., see [Wal88, Sti87]). A con-

nection made in [BG99] between 3-valued and 2-valued modal logics on extended

transition systems partly inspired the following new results.

3.2 Positive PML

In the following sections we shall use a positive form of PML, which we refer

to as PML

+

. Here we de�ne 2 and 3-valued semantics for PML

+

and observe

that every formula of PML can be expressed in PML

+

. The abstract syntax of

PML

+

is as follows, where p ranges over P :

� ::= p j �

1

^ �

2

j �

1

_ �

2

j 2� j 3�



De�nition 9. The value of a formula � of 3-valued PML

+

in a state s of a partial

Kripke structure M = (S;L;R), written [(M; s) j=

+

�], is de�ned inductively as

follows:

[(M; s) j=

+

p] = L(s; p)

[(M; s) j=

+

�

1

^ �

2

] = min([(M; s) j=

+

�

1

]; [(M; s) j=

+

�

2

])

[(M; s) j=

+

�

1

_ �

2

] = max([(M; s) j=

+

�

1

]; [(M; s) j=

+

�

2

])

[(M; s) j=

+

2�] = min(f[(M; s

0

) j=

+

�] j s! s

0

g)

[(M; s) j=

+

3�] = max(f[(M; s

0

) j=

+

�] j s! s

0

g)

We de�ne 2-valued PML

+

using this 3-valued interpretation as follows: a

PML

+

formula � holds at a state s of a complete Kripke structure M , written

(M; s) j=

+

�, just if [(M; s) j=

+

�] = true.

We can translate every formula of PML to an equivalent formula of PML

+

if

we consider only the partial Kripke structures M = (S;L;R) in which, for every

p 2 P there exists a q 2 P such that L(s; p) = comp(L(s; q)) for all s in S. In such

structures we refer to a proposition that is complementary to a proposition p as

p. We refer to such a partial Kripke structure as a complement-closed structure.

Our translation T from PML to PML

+

is then as follows: T (p) = p, T (:p) = p,

T (:(�

1

^ �

2

)) = T (:�

1

) _ T (:�

2

), T (:(2�)) = 3(T (:�)), T (::�) = T (�),

T (�

1

^ �

2

) = T (�

1

) ^ T (�

2

), and T (2�) = 2(T (�)).

Proposition10. Let M be a partial Kripke structure that is complement-closed

and � be a PML formula. Then

[(M; s) j= �] = [(M; s) j=

+

T (�)]:

3.3 Model Checking 3-Valued Modal Logics

In this section we show that model checking 3-valued modal logic is no more

expensive than model checking standard modal logic, and can be performed

using existing model checkers.

From a 3-valued labelling L of a partial Kripke structure we can derive a pair

of 2-valued labellings, one of which treats ? as true, while the other treats ? as

false.

De�nition 11. Given a 3-valued labelling function L, we de�ne the derived

optimistic labelling function L

o

and pessimistic labelling function L

p

as follows:

L

o

(s; p)

def

=

�

true if L(s; p) =?

L(s; p) otherwise

L

p

(s; p)

def

=

�

false if L(s; p) =?

L(s; p) otherwise

Given a partial Kripke structure M = (S;L;R) we write M

p

= (S;L

p

;R) for

the derived pessimistic structure and M

o

= (S;L

o

;R) for the derived optimistic

structure.



The 3-valued interpretation of a PML

+

formula at a state s in a partial

Kripke structure can be computed from the classical 2-valued interpretations of

the formula using the optimistic and pessimistic structures. The formula is true

at s if it is true under the pessimistic interpretation, is false at s if it is false

under the optimistic interpretation, and is ? otherwise.

Theorem12. Let M = (S;L;R) be a partial Kripke structure with s in S, let

M

p

and M

o

be the derived pessimistic and optimistic structures, and let � be a

formula of PML

+

. Then

[(M; s) j=

+

�]

def

=

8

<

:

true if (M

p

; s) j=

+

�

false if (M

o

; s) 6j=

+

�

? otherwise

Thus, one can do 3-valued model checking by running a standard 2-valued

model checker at most twice, once with the partial Kripke structure transformed

to a complete, optimistic Kripke structure, and once with the partial Kripke

structure transformed to a complete, pessimistic Kripke structure. These trans-

formations are linear with respect to the size of the structure, so 3-valued model

checking for PML has the same time and space complexity as the 2-valued case.

3.4 Adding Fixed-Point Operators

PML can be extended with a �xed-point operator to form a modal �xpoint logic,

also referred to as the propositional �-calculus [Koz83]. This very expressive logic

includes as fragments linear-time temporal logic (LTL) [MP92] and computation-

tree logic (CTL) [CE81]. In this section we extend PML

+

with �xed-point oper-

ators and show that model checking for this extended logic can also be reduced

to standard 2-valued model checking.

PML

+

extended with �xed-point operators has the following abstract syntax,

where p ranges over the set P of atomic propositions and X ranges over a set

V ar of �xed-point variables:

� ::= p j �

1

^ �

2

j �

1

_ �

2

j 2� j 3� j X j �X:� j �X:�

In �xed-point formulas �X:� and �X:� the operators � and � bind free occur-

rences of X in �. We refer to this version of the modal mu-calculus [Koz83] as

�L.

We now de�ne a 2-valued semantics of �L. For the case of the �xed-point

operator it makes sense to use a semantics that interprets a formula as the set

of states for which the formula holds. We can derive such a set-valued semantics

for PML

+

from the semantics given in Section 3.2 as follows:

kM;�k

def

= fs 2 S j (M; s) j=

+

�g

To interpret �L formulas we need not only a labelling to interpret atomic propo-

sitions but also a valuation to interpret �xed-point variables. A valuation V



maps a �xed-point variable to a set V(X) of states. Thus �L formulas are inter-

preted relative to a Kripke structure M and a valuation V . The new semantic

clauses for �xed-point variables and formulas are as follows: kM;Xk

V

def

= V(X),

kM; �X:�k

V

def

= �f , and kM;�X:�k

V

def

= �f , where �f (�f) denotes the greatest

(least) �xed-point of function f : S ! S, de�ned as

f(A)

def

= kM;�k

V[X:=A]

Here V [X := A] stands for the valuation that is like V except that X is mapped

to set A. Function f is a monotonic, set-valued function, so by the Knaster-

Tarski theorem [Tar55] we know it has a greatest �xed point, namely

S

fA �

S j A � f(A)g, where S is the set of states in Kripke structure M . Similarly, its

least �xed point is

T

fA � S j f(A) � Ag.

Now consider a 3-valued interpretation of �L. Here a formula � is interpreted

as a pair (S

1

; S

2

) of disjoint sets of states, where S

1

is the set for which � is known

to be true and S

2

is the set for which � is known to be false. A valuation function

V now maps a �xed-point variable to a pair of disjoint sets of states. Given a

pair (S

1

; S

2

) of sets we write �

1

(S

1

; S

2

) for the �rst set and �

2

(S

1

; S

2

) for the

second.

De�nition 13. The 3-valued interpretation [M;�]

V

of a �L formula relative to

a partial Kripke structure M = (S;L;R) is de�ned as follows:

[M;p]

V

def

= (fs 2 S j L(s; p) = trueg; fs 2 S j L(s; p) = falseg)

[M;�

1

^ �

2

]

V

def

= (�

1

([M;�

1

]

V

) \ �

1

([M;�

2

]

V

); �

2

([M;�

1

]

V

) [ �

2

([M;�

2

]

V

))

[M;�

1

_ �

2

]

V

def

= (�

1

([M;�

1

]

V

) [ �

1

([M;�

2

]

V

); �

2

([M;�

1

]

V

) \ �

2

([M;�

2

]

V

))

[M;2�]

V

def

= (fs j 8s

0

:s! s

0

) s

0

2 �

1

([M;�]

V

)g;

fs j 9s

0

:s! s

0

^ s

0

2 �

2

([M;�]

V

)g)

[M;3�]

V

def

= (fs j 9s

0

:s! s

0

^ s

0

2 �

1

([M;�]

V

)g;

fs j 8s

0

:s! s

0

) s

0

2 �

2

([M;�]

V

)g)

[M;X ]

V

def

= V(X)

[M; �X:�]

V

def

= �f

[M;�X:�]

V

def

= �f

In the �xed-point clauses f(S

1

; S

2

)

def

= [M;�]

V[X:=(S

1

;S

2

)]

. We know f has great-

est and least �xed-points by the Knaster-Tarski Theorem [Tar55] because pairs

of sets ordered by

(S

1

; S

2

) v (S

0

1

; S

0

2

)

def

= S

1

� S

0

1

and S

2

� S

0

2

form a complete lattice with meet and join operators de�ned as

W

f(S

i

; T

i

) j i 2

Ig

def

= (

S

S

i

;

T

T

i

) and

V

f(S

i

; T

i

) j i 2 Ig

def

= (

T

S

i

;

S

T

i

). The function [M;�]

V

is order-preserving according to this order on pairs of sets.



For the PML

+

fragment of �L, this semantics is equivalent to the semantics

given earlier for 3-valued PML

+

, in the sense that [(M; s) j=

+

�] = true just

if s is in �

1

([M;�]

V

), [(M; s) j=

+

�] = false just if s is in �

2

([M;�]

V

), and

[(M; s) j=

+

�] =? just if s is in neither �

1

([M;�]

V

) nor �

2

([M;�]

V

).

Now we show a result for �L analogous to that of the previous section for

PML

+

. Given a valuation V over a partial Kripke structure with state set S, we

write V

p

for the valuation that maps X to �

1

(V(X)), and V

o

for the valuation

that maps X to S � �

2

(V(X)).

Theorem14. Let M = (S;L;R) be a partial Kripke structure, V be a valuation,

M

p

and M

o

be the derived pessimistic and optimistic structures of M , and � be

a formula of �L. Then

[M;�]

V

= (kM

p

; �k

V

p

; S � kM

o

; �k

V

o

):

4 The Generalized Model-Checking Problem

4.1 Problem Statement

We have said that our three-valued semantics gives a value of ? for some formula

and some state in a partial Kripke structure just if the partial Kripke structure

does not contain enough information to give answer true or false. However, it

could be argued that our semantics returns?more often than it should. Consider

a partial Kripke structure M consisting of a single state s such that s! s and

the value of proposition p at s is ?. If we interpret formula p _ :p at s we get ?,

although in all complete Kripke structures more complete than M the formula

is interpreted as true.

This problem is not con�ned to formulas that are tautological or unsatis�able.

Consider the partial Kripke structure like M above but for which the value of

q at s is true. The formula q ^ (p _ :p), which is neither a tautology nor

unsatis�able, is ? at s, yet again in all complete structures the formula is true.

Thus, our three-valued semantics does not have the desirable property that

the value of a formula � at a state is ? just if there exists an s

0

such that

s � s

0

and the value of � at s

0

is true and there also exists an s

00

such that

s � s

00

and the value of � at s

00

is false. However, we can use this property

to de�ne an alternative three-valued semantics for modal logics. We call this

the thorough semantics because it does does more than our other semantics to

discover whether enough information is present in a partial Kripke structure

to give a de�nite answer. Let the completions C(M; s) of a state s of a partial

Kripke structure M be the set of all states s

0

of complete Kripke structures M

0

such that s � s

0

.

De�nition 15 Thorough three-valued semantics. Let � be a formula of

any two-valued logic for which a satisfaction relation j= is de�ned on complete



Kripke structures. The truth value of � in a state s of a partial Kripke structure

M under the thorough interpretation, written [(M; s) j= �]

t

, is de�ned as follows:

[(M; s) j= �]

t

=

8

<

:

true if (M

0

; s

0

) j= � for all (M

0

; s

0

) in C(M; s)

false if (M

0

; s

0

) 6j= � for all (M

0

; s

0

) in C(M; s)

? otherwise

In this section we focus on the following related problem.

De�nition 16 Generalized Model-Checking Problem. Given a state s of

a partial Kripke structure M and a formula � of a (two-valued) temporal logic

L, does there exist a state s

0

of a complete Kripke structure M

0

such that s � s

0

and (M

0

; s

0

) j= � ?

We call this problem the generalized model-checking problem. It should be clear

that interpreting a formula according to the thorough three-valued semantics is

equivalent to solving two instances of the generalized model checking problem.

We have phrased the problem this way to emphasize its tie to the satis�ability

problem.

The generalized model-checking problem generalizes both model checking

and satis�ability checking. At one extreme, where M is (fs

0

g; L; f(s

0

; s

0

)g) with

L(s

0

; p) =? for all p 2 P , all Kripke structures are more complete than M and

the problem reduces to the satis�ability problem for the corresponding logic.

At the other extreme, where M is complete, only a single structure needs to

be checked and the problem reduces to model checking. Therefore, the worst-

case complexity for the generalized model-checking problem will never be better

than the worst-case complexities for the model-checking and satis�ability prob-

lems for the corresponding logic. The following theorem formally states that

the generalized model-checking problem is at least as hard as the satis�ability

problem.

Theorem17. Let L denote the modal mu-calculus or any of its fragments (propo-

sitional logic, propositional modal logic, LTL, CTL, CTL

�

, etc.). Then the sat-

is�ability problem for L is reducible (in linear-time and logarithmic space) to the

generalized model-checking problem for L.

In the following sections, we present algorithms and complexity bounds for

the generalized model-checking problem for various temporal logics. Our algo-

rithms are based on automata-theoretic techniques (e.g., see [BVW94]). For ba-

sic notions of automata theory (including de�nitions of nondeterministic and

alternating B�uchi automata on words and trees), please refer to [Var97a].

4.2 Branching-Time Temporal Logics

We consider �rst the case of computation tree logic (CTL) [CES86]. The next

theorem presents a decision procedure for the generalized model-checking prob-

lem for CTL.



Theorem18. Given a state s

0

of partial Kripke structure M = (S;L;R) and

a CTL formula �, one can construct an alternating B�uchi word automaton

A

(M;s

0

);�

over a 1-letter alphabet with at most O(jSj � 2

O(j�j)

) states such that

(9(M

0

; s

0

0

) : s

0

� s

0

0

and (M

0

; s

0

0

) j= �) i� L(A

(M;s

0

);�

) 6= ;:

Proof. (Sketch) A

(M;s

0

);�

is constructed from the partial Kripke structureM and

a nondeterministic B�uchi tree automaton A

�

that accepts exactly the in�nite

trees satisfying the formula �, in such a way that A

(M;s

0

);�

accepts exactly the

computation trees of complete Kripke structures that satisfy the property � and

that are more complete than (M; s

0

).

A corollary of the above construction is that, if a state s

0

0

of a complete

Kripke structure as de�ned in Theorem 18 exists, there also exists a state of a

complete Kripke structure M

0

satisfying the property � such that M

0

contains

at most jSj � 2

O(j�j)

states.

Since the emptiness problem for alternating B�uchi word automata over a

1-letter alphabet can be reduced in linear time and logarithmic space to the

emptiness problem for nondeterministic B�uchi tree automata [BVW94], which

is itself decidable in quadratic time [VW86], we obtain the following.

Theorem19. The generalized model-checking problem for a state s

0

of a partial

Kripke structure M = (S;L;R) and a CTL formula � can be decided in time

O(jSj

2

� 2

O(j�j)

).

Note that, in the extreme case where M is complete, the upper bound given

by the previous algorithm is not optimal since a traditional CTL model-checking

algorithm [CES86] can decide whether (M; s

0

) j= � in time O(jSj � j�j).

In the general case, however, we can prove that the time complexity of the

previous algorithm in the size of the formula is essentially optimal.

Theorem20. The generalized model-checking problem for CTL is EXPTIME-

complete.

Let us now discuss brie
y the case of PML. Since PML is included in CTL,

the above algorithm can also be used to solve the generalized model-checking

problem for PML. However, the problem can now be solved using polynomial

space.

Theorem21. The generalized model-checking problem for PML is PSPACE-

complete.

If we restrict the logic one step further and reduce it to propositional logic,

it is easy to prove that the generalized model-checking problem has again the

same complexity as the satis�ability problem.

Theorem22. The generalized model-checking problem for propositional logic is

NP-complete.



Let us now consider the case of branching-time logics more expressive than

CTL, such as CTL

�

and the modal mu-calculus. Since formulas in these logics

also have translations to nondeterministic B�uchi tree automata (e.g., see [BVW94]),

the general algorithm presented in the proof of Theorem 18 also provides a deci-

sion procedure for the generalized model-checking problem for these logics, with

a quadratic time complexity in the size of the partial Kripke structure. As far

as the complexity in the formula is concerned, we can prove the following.

Theorem23. For any branching-time temporal logic L containing CTL, the

generalized model-checking problem for L is polynomial-time reducible to the sat-

is�ability problem for L.

Putting it all together, we obtain the following theorem which summarizes all

the results presented in this section concerning the complexity of the generalized

model-checking problem for branching-time temporal logics and a �xed partial

Kripke structure.

Theorem24. Let L denote propositional logic, propositional modal logic, CTL,

or any branching-time logic including CTL (such as CTL

�

or the modal mu-

calculus). The generalized model-checking problem for the logic L has the same

complexity as the satis�ability problem for L.

4.3 Linear-Time Temporal Logics

Let us now turn to linear-time temporal logic (LTL) [MP92]. In this case, we

can again reduce the generalized model-checking problem to checking emptiness

of an alternating B�uchi word automaton over a 1-letter alphabet.

Theorem25. Given a state s

0

of partial Kripke structure M = (S;L;R) and

an LTL formula �, one can construct an alternating B�uchi word automaton

A

(M;s

0

);�

over a 1-letter alphabet with at most O(jSj � 2

j�j

) states such that

(9(M

0

; s

0

0

) : s

0

� s

0

0

and (M

0

; s

0

0

) j= �) i� L(A

(M;s

0

);�

) 6= ;:

Since the proof of the above theorem is based only on the fact the property

� of interest can be represented by a nondeterministic B�uchi word automaton,

it also holds for properties directly represented by such automata (i.e., !-regular

languages) or formulas of logics which can be translated into such automata,

like extended temporal logic [Wol83] and the linear-time fragment of the mu-

calculus [SW90] for instance. We then obtain the following result.

Theorem26. The generalized model-checking problem for a state s

0

of a partial

Kripke structure M = (S;L;R) and an LTL formula � can be decided in time

O(jSj

2

� 2

2j�j

).

So far, the above results for LTL are very similar to those of the previous section

on the branching-time case. However, a major di�erence is that the generalized

model-checking problem for LTL is harder than the satis�ability problem and

the model-checking problem for LTL, which are both known to be PSPACE-

complete [Eme90].



Theorem27. The generalized model-checking problem for linear-time temporal

logic is EXPTIME-complete.

In summary, in contrast with the results obtained for branching-time in the

previous section, the generalized model checking problem is harder than the sat-

is�ability problem in the LTL case. This is due to the need for alternating/tree

automata to solve the problem. Other problems of that 
avor include the realiz-

ability [ALW89] and synthesis [PR89a, PR89b] problems for linear-time temporal

logic speci�cations.

At �rst sight, one could think that the need for tree automata could come

from the mismatch between LTL and the completeness preorder �. Indeed, the

completeness preorder is not logically characterized by the 3-valued extension of

LTL that can be obtained following the work of [BG99]. To see this, notice that

the completeness preorder reduces to a bisimulation relation in the case of com-

plete Kripke structures [BG99]. It is well-known that, while Kripke structures

that are bisimilar satisfy the same LTL formulas, Kripke structures that satisfy

the same LTL formulas are not necessarily bisimilar. The completeness preorder

is thus stronger than necessary for reasoning only about the linear behaviors of

partial Kripke structures. However, replacing the completeness preorder � by

the weaker \linear" preorder induced by 3-valued LTL in the de�nition of the

generalized model-checking problem does not make this problem easier: a con-

structive solution of the modi�ed problem still requires the construction of an

alternating automaton A

(M;s

0

);�

as in the proof of Theorem 25.

5 Related Work

Most of the existing work on 3-valued modal logic focuses on its proof theory. For

example, see [Seg67], [Mor89], and [Fit92a]. Our work in Section 3 is closest to

[Fit92b]. Here Fitting presents two interpretations of modal logic: one a many-

valued version and the other based on obtaining 2-valued interpretations from

each of a set of experts. Fitting shows that such a multi-expert interpretation

corresponds in a precise way to a multi-valued interpretation, similarly to how

we show that a 3-valued interpretation can be obtained by separate optimistic

and pessimistic interpretations. However, in Fitting's case the multi-expert in-

terpretation is not obtained by separate, 2-valued interpretations of each expert.

Also, Fitting does not de�ne a completeness preorder over his models, or char-

acterization results.

In [SRW99] a 3-valued logic is used for program analysis. The state of pro-

gram store is represented as a 3-valued structure of �rst-order logic. The possible

values of program store are conservatively computed by an abstract interpreta-

tion of the program on such a structure. The main technical result is an em-

bedding theorem showing that, for a certain class of abstraction functions on

the domain of such structures, the interpretation of a �rst-order formula on the

abstract structure is less de�nite than its interpretation on the structure itself.

A semantics like our thorough semantics could be de�ned for other preorders

on processes, such as re�nement preorder of modal process logic [LT88] or the



divergence preorder [Wal88]. In [BG99] we de�ned a 3-valued modal logic that

characterizes the divergence preorder, but did not de�ne a thorough seman-

tics based on it. In [ALW89] an implementation preorder is de�ned on process

speci�cations consisting of a �nite labelled transition system and a nondetermin-

istic Buchi word automaton. A process speci�cation P is said to be realizable

in [ALW89] if a P

0

lower in the implementation preorder exists for which the

in�nite behavior of the transition system of P

0

is contained in the language of

the Buchi automaton of P

0

. The realizability problem and the generalized model

checking problem for LTL clearly di�er, but their relationship deserves further

study.
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