
Model Checking Partial State Spaces

with 3-Valued Temporal Logics

(Extended Abstract)

Glenn Bruns and Patrice Godefroid

Bell Laboratories, Lucent Technologies

fgrb,godg@bell-labs.com

Abstract. We address the problem of relating the result of model check-

ing a partial state space of a system to the properties actually possessed

by the system. We represent incomplete state spaces as partial Kripke

structures, and give a 3-valued interpretation to modal logic formulas on

these structures. The third truth value ? means \unknown whether true

or false". We de�ne a preorder on partial Kripke structures that reects

their degree of completeness. We then provide a logical characterization

of this preorder. This characterization thus relates properties of less com-

plete structures to properties of more complete structures. We present

similar results for labeled transition systems and show a connection to

intuitionistic modal logic. We also present a 3-valued CTL model check-

ing algorithm, which returns ? only when the partial state space lacks

information needed for a de�nite answer about the complete state space.

1 Introduction

The theory and engineering of model checking has led to tools that can analyze

systems with millions of states. However, many systems we would like to analyze

have state spaces that are still often orders of magnitude larger than these tools

can handle. In this case a common approach is simply to explore just a part of the

state space; unexplored states and transitions are then absent in the incomplete

or \partial" state space.

In model checking a partial state space, the main issue is how answers ob-

tained in checking the partial state space relate to properties of the full state

space. Obviously, one cannot assume that all answers apply to the full state

space. The partial state space may be lacking \bad" states one is interested in

avoiding, or \good" states that one is interested in reaching. Naively, one could

work only with simple safety properties such as \all reachable states satisfy

proposition p", with the understanding that if the answer is false in the partial

state space then it is also false in the complete state space. But this approach

too strongly restricts the properties we can check.

Clearly a more systematic understanding is needed. We can work logically

and ask: which class of properties will hold of the complete state space just if

they hold of the partial state space? Or we can work operationally and ask:

how should we describe the relationship between a partial state space and a

more complete one? For example, we might consider that a partial state space



is simulated by a more complete one. Then we know that box-free modal mu-

calculus formulas that hold of the partial state space will hold of the complete

state space [BBLS92]. A problem with using the simulation relation for this

purpose is that it limits the kinds of properties we can check of the partial state

space, and does not tell us that if a property fails to hold of a partial state space

then it also fails to hold of more complete state spaces.

Our solution to this problem is to use models that capture explicitly the in-

completeness of state spaces, and to use 3-valued logics to capture the possibility

that we may not know whether a property is true or not in a partial state space.

In this approach every formula of the logic can be checked of the partial state

space. If the answer true or false is obtained then the answer also holds of the

complete state space. If the answer ? (meaning \unknown") is obtained then

the partial state space lacks information needed for a de�nite answer about the

complete state space.

A state-based framework is adopted for most of the paper. In the next section

we review Kripke structures and propositional modal logic. In Section 3 we

de�ne partial Kripke structures and the interpretation of modal logic on these

structures. We also de�ne a preorder on partial Kripke structures that reects

their degree of completeness and show that propositional modal logic (under

our 3-valued interpretation) characterizes this preorder. In Section 4 we present

a model checker for 3-valued CTL. In Section 5 we show how our results can

be applied to the problem of model-checking partial state space. In Section 6

the main results of Section 3 are reworked in an action-based framework. In

Section 7 we present our conclusions and discuss related work.

2 Kripke Structures and Modal Logic

Let P be a nonempty �nite set of atomic propositions.

De�nition 1. A Kripke structure M is a tuple (S;L;R), where S is a set of

states, L : S � P ! ftrue; falseg is an interpretation that associates a truth

value in ftrue; falseg with each atomic proposition in P for each state in S, and

R � S � S is a transition relation on S.

For technical convenience, we assume that a Kripke structure has no terminat-

ing state by requiring that R be total, i.e., that every state has an outgoing

R-transition. This assumption does not restrict the modeling power of the for-

malism, since we can model a terminated execution as repeating forever its last

state by adding a self-loop to that state. Note that Kripke structures can be

nondeterministic: a state can have more than one outgoing R-transition. We

also assume that the number of outgoing transitions from a state is �nite.

Temporal logics are modal logics geared towards the description of the tem-

poral ordering of events [Eme90]. Propositional modal logic (e.g, see [Var97]) is

propositional logic extended with the modal operator

3

. Propositional modal

logic can itself be extended with a �xpoint operator to form a modal �xpoint

logic, also referred to as the propositional �-calculus [Koz83]. This very expres-

sive logic includes as fragments linear-time temporal logic (LTL) [MP92] and

computation-tree logic (CTL) [CE81].



For the sake of simplicity, let us �rst consider propositional modal logic. More

expressive logics will be discussed later. We now recall the syntax and semantics

of propositional modal logic.

De�nition 2. Given a nonempty �nite set P of atomic propositions, formulas

of propositional modal logic have the following abstract syntax, where p ranges

over P :

� ::= p j :� j �

1

^ �

2

j

3

�

De�nition 3. The satisfaction of a formula � of propositional modal logic in

a state s of a Kripke structure M = (S;L;R), written (M; s) j= �, is de�ned

inductively as follows:

(M; s) j= p if L(s; p) = true

(M; s) j= :� if (M; s) 6j= �

(M; s) j= �

1

^ �

2

if (M; s) j= �

1

and (M; s) j= �

2

(M; s) j=

3

� if (M; t) j= � for some t such that (s; t) 2 R

The derived modal operator

2

is the dual of

3

, i.e., :

3

:. Thus, we have

(M; s) j=

2

� if (M; t) j= � for all t such that (s; t) 2 R. When M is understood,

we write s j= � instead of (M; s) j= �.

Propositional modal logic can be used to de�ne an equivalence relation on

states of Kripke structures: two states are equivalent if they satisfy the same set

of formulas of the logic. It is well known [HM85] that the equivalence relation

induced in this way by propositional modal logic coincides with the notion of

bisimulation relation [Mil89, Par81] (or more accurately, with that of zig-zag

relation [vB84], since propositions are mentioned in the relation).

De�nition 4. Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be Kripke struc-

tures. A binary relation B � S

1

� S

2

is a bisimulation relation if (s

1

; s

2

) 2 B

implies:

{ 8p 2 P : L

1

(s

1

; p) = L

2

(s

2

; p),

{ if (s

1

; s

0

1

) 2 R

1

, then there is some s

0

2

2 S

2

such that (s

2

; s

0

2

) 2 R

2

and

(s

0

1

; s

0

2

) 2 B, and

{ if (s

2

; s

0

2

) 2 R

2

, then there is some s

0

1

2 S

1

such that (s

1

; s

0

1

) 2 R

1

and

(s

0

1

; s

0

2

) 2 B.

Two states s

1

and s

2

are bisimilar, denoted s

1

� s

2

, if they are related by some

bisimulation relation.

Theorem5. [HM85] Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be Kripke

structures such that s

1

2 S

1

and s

2

2 S

2

, and let � denote the set of all formulas

of propositional modal logic. Then

(8� 2 � : [(M

1

; s

1

) j= �] = [(M

2

; s

2

) j= �]) i� s

1

� s

2

:

Propositional modal logic is then called a logical characterization of �. This

means that propositional modal logic cannot distinguish between bisimilar states,

and that states satisfying exactly the same set of propositional modal logic for-

mulas are bisimilar.



3 Partial Kripke Structures and 3-Valued Modal Logic

To model check partial state spaces, we need a way to model the absence of in-

formation about the missing parts of the full state space, both operationally (in

terms of Kripke structures) and logically (in terms of modal logics). A natural

approach to the operational modeling of incompleteness is to model an incom-

plete state space with a kind of partially-de�ned Kripke structure. We show that

a compatible approach in the logical modeling of incompleteness is to interpret

modal logic with a third truth value ?, which is understood as \unknown".

More precisely, we model partial state spaces as partial Kripke structures. We

then de�ne a 3-valued modal logic whose semantics is de�ned with respect to

partial Kripke structures. We proceed by studying an equivalence relation and

preorder implicitly de�ned by this logic. As before, let P be a nonempty �nite

set of atomic propositions.

De�nition 6. A partial Kripke structure M is a tuple (S;L;R), where S is a

set of states, L : S � P ! ftrue;?; falseg is an interpretation that associates a

truth value in ftrue;?; falseg with each atomic proposition in P for each state

in S, and R � S � S is a transition relation on S.

In interpreting propositional modal logic on partial Kripke structures, we in-

terpret the operators ^ and : using Kleene's strongest regular 3-valued propo-

sitional logic [Kle87]. In this logic ? is understood as \unknown whether true or

false". A simple way to de�ne conjunction (resp. disjunction) in this logic is as the

minimum (resp. maximum) of its arguments, under the order false <?< true.

We write min and max for these functions, and extend them to sets in the obvi-

ous way, with min(;) = true and max(;) = false. We de�ne negation using the

function neg that maps true to false, false to true, and ? to ?. Notice that these

functions give the usual meaning of the propositional operators when applied to

values true and false.

We now consider a 3-valued propositional modal logic having the same syntax

as propositional modal logic, and the following semantics.

De�nition 7. The truth value of a formula � of 3-valued propositional modal

logic in a state s of a partial Kripke structure M = (S;L;R), written [(M; s) j=

�], is de�ned inductively as follows:

[(M; s) j= p] = L(s; p)

[(M; s) j= :�] = neg([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = min([(M; s) j= �

1

]; [(M; s) j= �

2

])

[(M; s) j=

3

�] = max(f[(M; t) j= �] j (s; t) 2 Rg)

We again de�ne

2

as the dual of

3

, so [(M; s) j=

2

�] = min(f[(M; t) j= �] j

(s; t) 2 Rg). This semantics gives the usual meaning of the propositional and

modal operators when applied to complete Kripke structures.

This 3-valued propositional modal logic can be used to de�ne a preorder

on partial Kripke structures that reects their degree of completeness. Let �

be the ordering on truth values such that ? � true, ? � false, x � x (for



all x 2 ftrue;?; falseg), and x 6� y otherwise. Note that the operators neg,

min and max are monotonic with respect to �: if x � x

0

and y � y

0

, we have

neg(x) � neg(x

0

), min(x; y) � min(x

0

; y

0

), and max(x; y) � max(x

0

; y

0

). This

property is important to prove the results that follow.

De�nition 8. Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be partial Kripke

structures. The completeness preorder is the greatest relation � � S

1

� S

2

such

that s

1

� s

2

implies the following:

{ 8p 2 P : L

1

(s

1

; p) � L

2

(s

2

; p),

{ if (s

1

; s

0

1

) 2 R

1

, then there is some s

0

2

2 S

2

such that (s

2

; s

0

2

) 2 R

2

and

s

0

1

� s

0

2

, and

{ if (s

2

; s

0

2

) 2 R

2

, then there is some s

0

1

2 S

1

such that (s

1

; s

0

1

) 2 R

1

and

s

0

1

� s

0

2

.

Intuitively, s

1

� s

2

means that s

1

and s

2

are \nearly bisimilar" except that the

atomic propositions in state s

1

may be less de�ned than in state s

2

. Obviously,

s

1

� s

2

implies s

1

� s

2

.

The following theorem shows how the completeness preorder can be logically

characterized with 3-valued propositional modal logic.

Theorem9. Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be partial Kripke

structures such that s

1

2 S

1

and s

2

2 S

2

, and let � denote the set of all formulas

of 3-valued propositional modal logic. Then

(8� 2 � : [(M

1

; s

1

) j= �] � [(M

2

; s

2

) j= �]) i� s

1

� s

2

:

Proof. Proofs of theorems are omitted in this extended abstract because of space

constraints.

In other words, partial Kripke structures that are \more complete" with respect

to � have more de�nite properties with respect to �, i.e., have more properties

that are either true or false. Moreover, any formula � of 3-valued propositional

modal logic that evaluates to true or false on a partial Kripke structure has the

same truth value when evaluated on every more complete structure.

Formulas that evaluate to ? on a partial Kripke structure must be evaluated

on a more complete structure to get a de�nite answer. Obviously, any partial

Kripke structure can be completed to obtain a traditional fully-de�ned Kripke

structure, where � always evaluates to either true or false. Some partial Kripke

structures can only be completed to form Kripke structures that all satisfy the

property �, or to form Kripke structures that all violate � (this is the case, for

instance but not exclusively, when � is a tautology or is unsatis�able with a

2-valued interpretation). Some other partial Kripke structures can be completed

to form Kripke structures that satisfy � as well as Kripke structures that violate

�. Note that checking a formula � on a partial Kripke structure may return ?

even if � is a tautology or is unsatis�able in the 2-valued interpretation.

The following theorem states that 3-valued propositional modal logic logically

characterizes the equivalence relation induced by the completeness preorder �.



Theorem10. Let M

1

= (S

1

; L

1

;R

1

) and M

2

= (S

2

; L

2

;R

2

) be partial Kripke

structures such that s

1

2 S

1

and s

2

2 S

2

, and let � denote the set of all formulas

of 3-valued propositional modal logic. Then

(8� 2 � : [(M

1

; s

1

) j= �] = [(M

2

; s

2

) j= �]) i� (s

1

� s

2

and s

2

� s

1

):

The bisimulation relation of De�nition 4 can be applied directly to partial

Kripke structures. Two states s

1

and s

2

of partial Kripke structures are bisimilar,

denoted s

1

� s

2

, if they are related by some bisimulation relation. Since � is a

stronger relation than �, s

1

� s

2

implies both s

1

� s

2

and s

2

� s

1

, and that

3-valued propositional modal logic cannot distinguish between bisimilar states.

However, the converse is not true: s

1

� s

2

and s

2

� s

1

does not imply

s

1

� s

2

. This is illustrated by the example below. The existence of such an

example proves that, in contrast with 2-valued propositional modal logic, 3-

valued propositional modal logic is not a logical characterization of bisimulation

as de�ned in De�nition 4.

Example 1. Here is an example of two non-bisimilar states that cannot be dis-

tinguished by any formula of 3-valued propositional modal logic.

s0

s1 s3s2

(true,    )⊥ (    ,true)⊥(    ,    )⊥⊥ (    ,    )⊥⊥

s’1 s’3

s’0

s’2

(true,true) (true,true)

(true,true)(true,true)

These two partial Kripke structures have two atomic propositions p and q,

whose truth value is de�ned in each state as indicated in the �gure by a pair of

the form (p; q). We have the following relations:

{ s

2

� s

0

2

and s

0

2

� s

2

,

{ s

3

� s

0

3

and s

0

3

� s

3

,

{ s

1

� s

0

2

and s

0

3

� s

1

, s

0

1

� s

2

and s

3

� s

0

1

,

{ s

0

� s

0

0

and s

0

0

� s

0

.

We have that s

0

� s

0

0

and s

0

0

� s

0

, but s

0

6� s

0

0

since s

1

is not bisimilar to any

state in the second partial Kripke structure.

4 A Model Checker for 3-Valued CTL

We have so far focused on modal propositional logic because it is a simple con-

text in which to present our ideas. However, this logic cannot express even

simple safety properties. In this section we present a 3-valued semantics for

computation-tree logic (CTL) [CE81] as well as a model-checking algorithm.

We consider CTL because it extends the expressiveness of modal propositional

logic, the model-checking algorithm for the standard 2-valued interpretation is



well known, and because it is expressive enough to specify many interesting

properties.

Our algorithm is based on the algorithm of [CES86]. We focus here, as in

[CES86], on formulas of the form A(f

1

U f

2

), since the model checking of other

CTL formulas is either similar or much simpler. Formula A(f

1

U f

2

) holds of a

state in a Kripke structure if, along all paths from the state, there exists a state

in the path for which f

2

holds and for which f

1

holds of all previous states in

the path.

The semantics of CTL is given as an inductive de�nition of the satisfaction

relation j= between a Kripke structure M = (S;L;R) and a CTL formula. The

clause of the de�nition of j= for formula A(f

1

U f

2

) reads

s

0

j= A(f

1

U f

2

) i� for all paths (s

0

; s

1

; : : :);

9i � 0 : s

i

j= f

2

^ 8j : 0 � j < i) s

j

j= f

1

(Here the Kripke structureM is understood.) To see if a state satis�esA(f

1

U f

2

),

the procedure au of the CTL model checker of [CES86] works roughly as follows.

It is called with a formula f of the form A(f

1

U f

2

), a state s

0

, and a result vari-

able b. It is assumed that when au is called a state is labeled with f

1

just if it

satis�es f

1

, and similarly for f

2

. A depth-�rst search of the states reachable from

s

0

is then made, with states marked as they are visited. Initially, if s

0

is labeled

with f

2

, then s

0

is labeled with A(f

1

U f

2

) and the procedure terminates with b

set to true. Otherwise if s

0

is not labeled with f

1

, then the procedure terminates

with b set to false. Otherwise procedure au is called recursively on all successors

of s

0

. If a recursive call is made to a state that is already marked, the procedure

terminates with b set to false.

For 3-valued CTL we de�ne A(f

1

U f

2

) as follows:

[s

0

j= A(f

1

U f

2

)] = min(f[(s

0

; s

1

; : : :) j= f

1

U f

2

] j (s

0

; s

1

; : : :) a pathg)

[(s

0

; s

1

; : : :) j= f

1

U f

2

] = max(f[(s

0

; s

1

; : : :) j= f

1

U

k

f

2

] j k � 0g)

[(s

0

; s

1

; : : :) j= f

1

U

k

f

2

] = min(min(f[s

i

j= f

1

] j i < kg); f[s

k

j= f

2

]g)

The min operators in this de�nition correspond to conjunction and universal

quanti�cation in the de�nition for 2-valued CTL above, and similarly the max

operator in this de�nition corresponds to existential quanti�cation in the de�ni-

tion above. The two de�nitions agree on complete Kripke structures.

Consider the problem of adapting the procedure au of the CTL model checker

of [CES86] to the 3-valued case. One way in which the algorithm becomes more

complicated is in checking a state for the �rst time. Suppose our partial Kripke

structure has only a single path, and that the value of formulas f

1

and f

2

for

the �rst three states on the path are as follows:

s

0

: (f

1

= true; f

2

=?); s

1

: (f

1

= true; f

2

= false); s

2

: (f

1

=?; f

2

= true)

We see that f

2

is ? at s

0

, but we cannot conclude immediately that A(f

1

U f

2

)

is ? at s

0

because we may �nd (and do, in this example) that f

2

is true at a

later state. However, if f

1

were ? or false at state s

1

, then we could conclude

that A(f

1

U f

2

) is ? at s

0

.



Determining the result when a cycle is detected also becomes more compli-

cated. In the 2-valued algorithm we know that f

1

holds but f

2

does not along

all states in a cycle. In the 3-valued case, for states in a cycle it may be that f

2

is true and f

2

is false, or f

2

is true and f

2

is ?, or f

2

is ? and f

2

if false.

Figure 1 shows our modi�ed version of the procedure au of [CES86]. The

idea behind the algorithm is to check the partial Kripke structure twice. First

check the structure under a pessimistic interpretation, in which the value ? is

understood as false. If the result of the check is true then return true as the

3-valued result. Then check the structure under an optimistic interpretation, in

which the value ? is understood as true. If the result of this check is false then

return false. Otherwise return ?.

Our algorithm merges these two checks so that they can be run at the same

time. Procedure au now takes an additional argumentmode � fp; og and returns

a pair (v

p

; v

o

). If mode contains constant p (resp. o) then value v

p

(v

o

) is the

result of the pessimistic search. If mode does not contain p (resp. o) then v

p

(v

o

) is false. When mode = fp; og we interpret the returned pairs (false; false),

(false; true), and (true; true) in a 3-valued sense as false,?, and true, respectively.

Notice that an optimistic check must give true if a pessimistic one does, so result

(true; false) is impossible.

In our algorithm states have distinct optimistic and pessimistic labelings.

Function labeled(s; f; i) returns true just if state s has label i 2 fp; og for for-

mula f . Function add label i(s; f; i) gives state s label i for formula f . Func-

tion label(s; f;mode) returns a pair (v

p

; v

o

) where v

i

is false if i 62 mode and

labeled(s; f; i) otherwise. The operator _ on pairs of truth values is de�ned by

(x; y) _ (u;w) = (x _ u; y _ w). The order < on pairs of truth values is de�ned

by (false; false) < (false; true) < (true; false) < (true; true).

States have distinct optimistic and pessimistic markings as well. Function

marked(s) returns the set of interpretations for which state s is marked. Function

add mark(s; A), where A � fp; og, marks s with each interpretation in A.

The proof of correctness of our model-checking algorithm is omitted in this

extended abstract. Our modi�ed procedure, like the original one, requires time

O(card(S)+ card(R)), and thus the overall complexity of the resulting 3-valued

CTL model-checking algorithm is still O(length(�) � (card(S) + card(R))).

5 Applications

We now discuss how to exploit the results of the previous sections in practice.

Consider a (possibly in�nite) complete state space modeled as a Kripke structure

M = (S;L;R). Imagine that this state space is so large that only part of it can

be explored. We now present a simple construction to de�ne a partial Kripke

structure M

0

= (S

0

; L

0

;R

0

) representing only the explored states and transitions

of this state space.

Let S

E

� S be the set of explored states and R

E

� R be the set of explored

transitions. For this application, we can assign the value ? to all the atomic

propositions in each unexplored state s 2 S n S

E

. Since unexplored states are

indistinguishable with this model, a single state s

?

of M

0

is enough to model

all of them. For every unexplored transition (s; t) 2 R n R

E

such that s 2 S

E

,



1 procedure au(f,s,b,mode)

2 begin

3 parent mode := mode;

4 mode := mode - marked(s);

5 add mark(s,mode);

6 temp mode := mode;

7 for all i in temp mode do

8 begin

9 if labeled(s,f2,i) then

10 begin add label i(s,f,i); mode := mode - fig end;

11 else if :labeled(s,f1,i) then

12 mode := mode - fig

13 end;

14 if mode = ; then

15 begin b := label(s,f,parent mode); return end;

16 push(s,ST);

17 min := (true; true);

18 for all s1 2 successors(s) do

19 begin

20 au(f,s1,b1,mode);

21 if b1 < min then min := b1;

22 if min = (false; false) then break

23 end;

24 pop(ST);

25 b := min _ label(s,f,parent mode - mode);

26 add label(s,f,b);

27 return

28 end

Fig. 1. Procedure au of model-checking algorithm for 3-valued CTL

we add a transition (s; s

?

) in R

0

to model that we do not know where this

unexplored transition leads. To preserve our assumption that R

0

is total, we also

assume there is a transition (s

?

; s

?

) inR

0

. However, this is the only outgoingR

0

-

transition of s

?

, modeling that unexplored states cannot lead back to explored

states. In summary, we have the following:

{ S

0

= S

E

[ fs

?

g

{ L

0

(s; p) =

�

L(s; p) if s 2 S

E

? if s = s

?

{ R

0

= R

E

[ f(s; s

?

) j s 2 S

E

and (s; t) 2 R nR

E

g [ f(s

?

; s

?

)g

Let us assume that M has initial state s

0

, and that s

0

is explored and denoted

by s

0

0

in S

0

. It is easy to prove the following.



Theorem11. Let Kripke structure M = (S;L;R) with initial state s

0

represent

a complete state space, and let M

0

= (S

0

; L

0

;R

0

) be a partial Kripke structure

built from M by the construction above. Then

s

0

0

� s

0

:

Theorems 9 and 11 together guarantee that any formula � of 3-valued proposi-

tional modal logic that evaluates to true or false on a partial state space de�ned

with the construction above has the same truth value when evaluated on the

corresponding complete state space.

Example 2. Consider the three following partial Kripke structures with a single

atomic proposition p, whose truth value is de�ned in each state as indicated in

the �gure.

⊥p=⊥p=⊥p=

s2s1 s3
p=true

p=true

p=false p=false

p=true p=false

The formula A(true U p) of 3-valued CTL has a di�erent truth value in each

of the top states of these partial Kripke structures: [s

1

j= A(true U p)] = true,

[s

2

j= A(true U p)] =?, and [s

3

j= A(true U p)] = false.

An important application of our framework is thus to make it possible to cope

with missing parts of the state space during model checking and still obtain a

de�nite answer when this is possible. In the case of CTL properties, the algorithm

of the previous section captures exactly when this is possible and how do it, for

any CTL formula and any partial Kripke structure.

Other possible applications for our framework include the evaluation of heuris-

tics for guiding the search and pruning state spaces (one can determine which

heuristics more often give de�nite answers for which properties), and the analy-

sis of systems containing state variables whose values cannot be read (and hence

are unknown) at some points during the execution of the system.

6 An Action-Based Approach to Partial State Spaces

In this section we revisit the main results of Section 3 in an action-based frame-

work, where system behavior is modeled as a labeled transition system rather

than a Kripke structure. Here the focus is how a system responds to events (or

actions), which are modeled as transition labels, rather than on the propositions

that hold of system states.

To capture the incompleteness of a state space, a transition system can be

labeled with a divergence predicate " [Mil81]. If the divergence predicate holds

for label a at state p then intuitively some of the a transitions from p in the



full state space may be missing at p in the partial state space. Note that this

predicate takes a value of either true or false for each state and label, while the

atomic propositions of partial Kripke structures are 3-valued.

De�nition 12. An extended transition system is a structure (S;A; f

a

! j a 2

Ag; ") where S is a set of states, A is a set of labels, f

a

! j a 2 Ag is a family of

transition relations, and " � S �A is a divergence relation.

We write p

a

! q if (p; q) 2

a

!. We write p " a if (p; a) 2 " and say that p

diverges for a. Also, we write p # a if not p " a and say that p converges for a.

The degree to which a state space is complete is modeled here by the diver-

gence preorder [Mil81, Wal90] (also known as the partial bisimulation preorder),

which is a generalization of the simulation and bisimulation relations. If a pair

(p; q) is in this relation, then q must be able to match every transition of p.

Furthermore, if p is convergent for label a, then p must be able to match every

transition of q.

De�nition 13. The divergence preorder v is the greatest binary relation on

states of an extended transition system such that p v q implies:

{ whenever p

a

! p

0

there exists a q

0

such that q

a

! q

0

and p

0

v q

0

, and

{ if p # a, then q # a and whenever q

a

! q

0

there exists a p

0

such that p

a

! p

0

and p

0

v q

0

.

This preorder di�ers from the completeness preorder of Section 3 because

the divergence predicate speci�cally captures the possibility that transitions are

missing at a state, while in partial Kripke structures an atomic proposition with

value ? may not represent this possibility.

Hennessy-Milner Logic (HML) [HM85] is a propositional modal logic for la-

beled transition systems. Formulas of HML have the following abstract syntax:

� ::= tt j :� j �

1

^ �

2

j hai�

where a ranges over A. We use the standard propositional abbreviations, includ-

ing ff and _ , plus the derived modal operator [a], de�ned by [a]� = :hai:�.

We give the following 3-valued interpretation of HML formulas. The truth

value of an HML formula � for a state p, written [p j= �], is de�ned inductively

as follows:

[p j= tt] = true

[p j= :�] = neg([p j= �])

[p j= �

1

^ �

2

] = min([p j= �

1

]; [p j= �

2

])

[p j= hai�] =

�

max(f[p

0

j= �] j p

a

! p

0

g) if p # a

max(f[p

0

j= �] j p

a

! p

0

g [ f?g) otherwise

HML, under our 3-valued interpretation, characterizes the divergence pre-

order on extended transition systems.



Theorem14. Let (S;A; f

a

! j a 2 Ag; ") be an extended transition system such

that the set fp

0

j p

a

! p

0

g is �nite for all p in S and a in A. Let p and q be states

in S. Then

(8� : [p j= �] � [q j= �]) i� p v q:

Our 3-valued interpretation of HML has a close connection to the intuitionistic

interpretation by Plotkin. In [Sti87] Plotkin's interpretation is presented and it

is shown that the logic characterizes the divergence preorder. A positive form of

HML is used there, with syntax

� ::= tt j ff j �

1

^ �

2

j �

1

_ �

2

j hai� j [a]�

Negation is not present, but the complementary forms of tt, ^ , and hai are

included. The intuitionistic semantics of this logic is like that of standard 2-

valued HML, except for the [a] operator. The intuitionistic semantics of the two

modal operators are:

p j=

I

hai� if 9p

0

: p

a

! p

0

and p

0

j=

I

�

p j=

I

[a]� if p # a and 8p

0

: p

a

! p

0

) p

0

j=

I

�

These two operators are no longer duals, unlike the standard 2-valued inter-

pretation and our 3-valued interpretation. For example, if process p has no a

transitions and p " a then p 6j= [a] ff and p 6j= hai tt.

The precise connection between this interpretation and our 3-valued inter-

pretation is as follows. We de�ne the syntactic complement comp(�) of a positive

HML formula � as follows: comp(tt) = ff, comp(ff) = tt, comp(�

1

^ �

2

) =

comp(�

1

) _ comp(�

2

), comp(�

1

_ �

2

) = comp(�

1

) ^ comp(�

2

), comp(hai�) =

[a]comp(�), and comp([a]�) = haicomp(�). Then our 3-valued interpretation

gives the result ? for p and � just if both � and comp(�) fail to hold for p.

Theorem15. Let � be a formula of positive HML and let p be a state of an

extended transition system. Then the following all hold:

1. [p j= �] = true i� p j=

I

�

2. [p j= �] = false i� p j=

I

comp(�)

3. [p j= �] = ? i� p 6j=

I

� and p 6j=

I

comp(�)

In [Sti87] the divergence preorder is characterized by intuitionistic HML as

follows. Let p and q be processes in extended transition systems. Then p v q

just if, for all � of positive HML, p j=

I

� ) q j=

I

�. From Theorem 15 the

equivalent condition in 3-valued HML is ([p j= �] = true) ) ([p j= �] = true).

Clearly 8� : ([p j= �] = true) ) ([q j= �] = true) is equivalent to the condition

8� : [p j= �] � [q j= �] used in Theorem 14 above. Thus, in this action-based

framework, we could have de�ned 3-valued HML in terms of intuitionistic HML,

and then derived our characterization result from the characterization result of

[Sti87].



An advantage of 3-valued modal logic over intuitionistic modal logic is that it

more naturally captures the problem of model-checking partial state spaces. For

example, a 3-valued modal logic leads directly to a model checker that, given

a state and a formula, returns true, false, or ?. In contrast, a model checker

directly based on intuitionistic modal logic would return either true or false.

The value ? could only be inferred from the results of multiple checks.

7 Conclusions

We developed a simple framework for reasoning about partially-known behaviors

of a system. We showed that the use of 3-valued temporal logics nicely models

the absence of information about unknown parts of the state space of a system.

We then precisely determined, both operationally and logically, the relationship

between a partial state space and a more complete one. We also presented a

model-checking algorithm for 3-valued CTL. This model checker can check any

CTL formula on any partial state space, and returns either a de�nite answer of

true or false concerning the full state space, or ? (\I don't know") if the partial

state space lacks information needed for a de�nite answer.

We also compared our results on partial Kripke structures with existing

work on extended transition systems. In the latter framework, we showed that

Hennessy-Milner Logic with our 3-valued interpretation provides an alternative

characterization of the divergence preorder in addition to the intuitionistic in-

terpretation of Plotkin. Further work on divergence preorders and logics to char-

acterize them can be found in [Sti87, Wal90]. Veri�cation techniques based on

the divergence preorder are described in [Wal90, CS90]. In all this work logical

formulas are interpreted normally in the 2-valued sense. To our knowledge none

of the work on 3-valued modal logics (e.g., [Seg67, Mor89, Fit92]) shows how

these logics can be used to characterize relations like our completeness preorder.

The model-checking framework developed in this paper could be extended

so it can be performed \symbolically" following the ideas of [BCM

+

90]. This

would require the use of data structures and algorithms for representing and

manipulating 3-valued formulas, such as Ternary Decision Diagrams [Sas97].

Acknowledgments

We thank Michael Benedikt and the anonymous referees for helpful comments

on this paper.

References

[BBLS92] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving

simulations. In Proceedings of CAV '92, LNCS 663, pages 260{273, 1992.

[BCM

+

90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-

bolic model checking: 10

20

states and beyond. In Proceedings of the 5th

Symposium on Logic in Computer Science, pages 428{439, Philadelphia,

June 1990.



[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization

Skeletons using Branching-Time Temporal Logic. In D. Kozen, editor, Pro-

ceedings of the Workshop on Logic of Programs, Yorktown Heights, volume

131 of Lecture Notes in Computer Science, pages 52{71. Springer-Verlag,

1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of

�nite-state concurrent systems using temporal logic speci�cations. ACM

Transactions on Programming Languages and Systems, 8(2):244{263, Jan-

uary 1986.

[CS90] Rance Cleaveland and Bernhard Ste�en. When is \partial" adequate? A

logic-based proof technique using partial speci�cations. In Proceedings of

the 5th Annual Symposium on Logic in Computer Science. IEEE Computer

Society Press, 1990.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science. Elsevier/MIT Press, Amster-

dam/Cambridge, 1990.

[Fit92] Melvin Fitting. Many-valued modal logics II. Fundamenta Informaticae,

17:55{73, 1992.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-

currency. Journal of the ACM, 32(1):137{161, 1985.

[Kle87] Stephen Cole Kleene. Introduction to Metamathematics. North Holland,

1987.

[Koz83] D. Kozen. Results on the Propositional Mu-Calculus. Theoretical Computer

Science, 27:333{354, 1983.

[Mil81] R. Milner. A Modal Characterization of Observable Machine Behavior. In

Proc. CAAP'81, volume 112 of Lecture Notes in Computer Science, pages

25{34. Springer-Verlag, 1981.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mor89] Osamu Morikawa. Some modal logics based on a three-valued logic. Notre

Dame Journal of Formal Logic, 30(1):130{137, 1989.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Speci�cation. Springer-Verlag, 1992.

[Par81] D. M. R. Park. Concurrency and automata on in�nite sequences. In

P. Deussen, editor, 5

th

GI Conference, volume 104 of Lecture Notes in Com-

puter Science, pages 167{183. Springer-Verlag, 1981.

[Sas97] T. Sasao. Ternary Decision Diagrams { A Survey. In Proc. IEEE Inter-

national Symposium on Multiple-Valued Logic, pages 241{250, Nova Scotia,

May 1997.

[Seg67] Krister Segerberg. Some modal logics based on a three-valued logic. Theo-

ria, 33:53{71, 1967.

[Sti87] Colin Stirling. Modal logics for communicating systems. Theoretical Com-

puter Science, 49:331{347, 1987.

[Var97] M.Y. Vardi. Why is modal logic so robustly decidable? In Proceedings of

DIMACS Workshop on Descriptive Complexity and Finite Models. AMS,

1997.

[vB84] J. van Bentham. Correspondence theory. In D. Gabbay and F. Guenthner,

editors, Handbook of Philosophical Logic Vol. II. Reidel, 1984.

[Wal90] D. J. Walker. Bisimulation and divergence. Information and Computation,

85(2):202{241, 1990.

This article was processed using the L

a

T

E

X macro package with LLNCS style


