
Automatic Abstraction

Using Generalized Model Checking

Patrice Godefroid

1

and Radha Jagadeesan

?2

1

Bell Laboratories, Lucent Technologies, god@bell-labs.com

2

Department of Computer Science, Loyola University of Chicago, radha@cs.luc.edu

Abstract. Generalized model checking is a framework for reasoning

about partial state spaces of concurrent reactive systems. The state space

of a system is only \partial" (partially known) when a full state-space

exploration is not computationally tractable, or when abstraction tech-

niques are used to simplify the system's representation. In the context

of automatic abstraction, generalized model checking means checking

whether there exists a concretization of an abstraction that satis�es a

temporal logic formula. In this paper, we show how generalized model

checking can extend existing automatic abstraction techniques (such as

predicate abstraction) for model checking concurrent/reactive programs

and yield the three following improvements: (1) any temporal logic for-

mula can be checked (not just universal properties as with traditional

conservative abstractions), (2) correctness proofs and counter-examples

are both guaranteed to be sound, and (3) veri�cation results can be more

precise. We study the cost needed to improve precision by presenting new

upper and lower bounds for the complexity of generalized model checking

in the size of the abstraction.

1 Introduction

How to broaden the scope of model checking to reactive software is currently

one of the most challenging open problems related to computer-aided veri�ca-

tion. Essentially two approaches have been proposed and are still actively being

investigated. The �rst approach consists of adapting model checking into a form

of systematic testing that simulates the e�ect of model checking while being ap-

plicable to (Unix-like) processes executing arbitrary code [10]; although counter-

examples reported with this approach are sound, it is inherently incomplete for

large systems. The second approach consists of automatically extracting a model

out of a software application by statically analyzing its code, and then of ana-

lyzing this model using traditional model-checking algorithms (e.g., [2, 6, 25, 21,

14]); although automatic abstraction may be able to prove correctness, counter-

examples are generally unsound since abstraction usually introduces unrealistic

behaviors that may yield to spurious errors being reported when analyzing the

model.

?

Supported in part by NSF.

Recently [11], we showed how automatic abstraction can be performed to ver-

ify arbitrary formulas of the propositional �-calculus [17] in such a way that both

correctness proofs and counter-examples are guaranteed to be sound. The key

to make this possible is to represent abstract systems using richer models that

distinguish properties that are true, false and unknown of the concrete system.

Examples of such richer modeling formalisms are partial Kripke structures [3]

and Modal Transition Systems [19, 11]. Reasoning about such systems requires

3-valued temporal logics [3], i.e., temporal logics whose formulas may evaluate

to true, false or ? (\unknown") on a given model. Then, by using an automatic

abstraction process that generates by construction an abstract model which is

less complete than the concrete system with respect to a completeness preorder

logically characterized by 3-valued temporal logic, every temporal property that

evaluates to true (resp. false) on the abstract model automatically holds (resp.

does not hold) of the concrete system, hence guaranteeing soundness of both

proofs and counter-examples; in case a property evaluates to ? on the model, a

more complete (i.e., less abstract) model is then necessary to provide a de�nite

answer concerning this property of the concrete system. This approach is appli-

cable to check arbitrary formulas of the propositional �-calculus (thus including

negation and arbitrarily nested path quanti�ers), not just universal properties as

with a traditional \conservative" abstraction that merely simulates the concrete

system. It is shown in [11] that building a 3-valued abstraction can be done us-

ing existing abstraction techniques at the same computational cost as building

a conservative abstraction.

In this paper, we build upon this previous work and study the use of general-

ized model checking in the context of automatic abstraction. Generalized model

checking was introduced in [4] as a way to improve precision when reasoning

about partially de�ned systems. Speci�cally, given a model M and a temporal-

logic formula �, the generalized model-checking problem is to decide whether

there exists a complete system M

0

that is more complete thanM and that satis-

�es the formula �. The model M can thus be viewed as a partial solution to the

satis�ability problem for � which reduces the solution space to complete systems

that are more complete than M with respect to a completeness preorder. Gen-

eralized model checking is thus a generalization of both satis�ability and model

checking. Algorithms and complexity bounds for the generalized model-checking

problem for various temporal logics were presented in [4].

We present here several new results. First, we study the complexity of gener-

alized model checking in the size of the abstraction jM j, and provide new upper

and lower bounds for various temporal logics. We show that the worst-case run-

time complexity of generalized model checking for the temporal logics LTL and

CTL can be quadratic in jM j, but that generalized model checking can be solved

in time linear in jM j in the case of persistence properties, i.e., properties rec-

ognizable by co-B�uchi automata. Complexity in the size of the abstraction is

important in practice since the abstraction can be large and hence is often the

main limiting factor that prevents obtaining veri�cation results.

Second, we show how generalized model checking can help improve precision

of veri�cation via automatic abstraction. We present a new process for iterative

abstraction re�nement that takes advantage of the techniques introduced here.

Iterative abstraction re�nement [1, 9, 13] in the context of predicate abstrac-

tion [12] is a process for automatically re�ning an abstraction that is guided

by spurious counter-examples found at higher levels of abstraction. In contrast

with abstractions used in traditional program analysis, iterative abstraction re-

�nement using predicate abstraction has thus the advantage of making it pos-

sible to adapt the level of abstraction dynamically on a demand-driven basis

guided by the veri�cation needs. Unfortunately, re�ning an abstraction can be

an expensive operation since successive abstraction re�nements can generate ex-

ponentially larger abstractions. Better precision when analyzing an abstraction

is therefore critical to avoid unnecessary re�nements of this abstraction. We be-

lieve generalized model checking is a useful addition to existing techniques for

automatic abstraction since it can help an iterative \abstract-check-re�ne" ver-

i�cation process terminate sooner and more often by providing better analysis

precision for a cost polynomial (quadratic or linear) in the size of the abstraction.

2 Background: Generalized Model Checking

In this section, we recall the main ideas and key notions behind the frame-

work of [3, 4, 11, 15] for reasoning about partially de�ned systems. Examples of

modeling formalisms for representing such systems are partial Kripke structures

(PKS) [3], Modal Transition Systems (MTS) [19, 11] or Kripke Modal Transition

Systems (KMTS) [15].

De�nition 1. A KMTSM is a tuple (S; P;

must

�! ;

may

�!; L), where S is a nonempty

�nite set of states, P is a �nite set of atomic propositions,

may

�!� S�S and

must

�!�

S � S are transition relations such that

must

�!�

may

�!, and L : S � P ! ftrue;?

; falseg is an interpretation that associates a truth value in ftrue;?; falseg with

each atomic proposition in P for each state in S. An MTS is a KMTS where

P = ;. A PKS is a KMTS where

must

�!=

may

�!.

The third value ? (read \unknown") and may-transitions that are not must-

transitions are used to model explicitly a loss of information due to abstraction

concerning, respectively, state or transition properties of the concrete system be-

ing modeled. A standard, complete Kripke structure is a special case of KMTS

where

must

�!=

may

�! and L : S � P ! ftrue; falseg, i.e., no proposition takes value

? in any state. It can be shown that PKSs, MTSs, KMTSs and variants of

KMTSs where transitions are labeled and/or two interpretation functions L

may

and L

must

are used [15], are all equally expressive (i.e., one can translate any for-

malism into any other). In this paper, we will use KMTSs since they conveniently

generalize models with may-transitions only, which are used with traditional

conservative abstractions. Obviously, our results also hold for other equivalent

formalisms (exactly as traditional model-checking algorithms and complexity

bounds apply equally to systems modeled as Kripke structures or Labeled Tran-

sition Systems, for instance).

In interpreting propositional operators on KMTSs, we use Kleene's strong

3-valued propositional logic [16]. Conjunction ^ in this logic is de�ned as the

function that returns true if both of its arguments are true, false if either argu-

ment is false, and ? otherwise. We de�ne negation : using the function `comp'

that maps true to false, false to true, and ? to ?. Disjunction _ is de�ned as

usual using De Morgan's laws: p _ q = :(:p ^ :q). Note that these functions

give the usual meaning of the propositional operators when applied to values

true and false.

Propositional modal logic (PML) is propositional logic extended with the

modal operator AX (which is read \for all immediate successors"). Formulas of

PML have the following abstract syntax: � ::= p j :� j �

1

^ �

2

j AX�, where

p ranges over P . The following 3-valued semantics generalizes the traditional

2-valued semantics for PML.

De�nition 2. The value of a formula � of 3-valued PML in a state s of a KMTS

M = (S; P;

must

�! ;

may

�!; L), written [(M; s) j= �], is de�ned inductively as follows:

[(M; s) j= p] = L(s; p)

[(M; s) j= :�] = comp([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = [(M; s) j= �

1

] ^ [(M; s) j= �

2

]

[(M; s) j= AX�] =

8

>

<

>

:

true if 8s

0

: s

may

�! s

0

) [(M; s

0

) j= �] = true

false if 9s

0

: s

must

�! s

0

^ [(M; s

0

) j= �] = false

? otherwise

This 3-valued logic can be used to de�ne a preorder on KMTSs that re
ects

their degree of completeness. Let � be the information ordering on truth values,

in which ? � true, ? � false, x � x (for all x 2 ftrue;?; falseg), and x 6� y

otherwise.

De�nition 3. Let M

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) and M

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs. The completeness preorder � is the greatest relation

B � S

A

� S

C

such that (s

a

; s

c

) 2 B implies the following:

{ 8p 2 P : L

A

(s

a

; p) � L

C

(s

c

; p),

{ if s

a

must

�!

A

s

0

a

, there is some s

0

c

2 S

C

such that s

c

must

�!

C

s

0

c

and (s

0

a

; s

0

c

) 2 B,

{ if s

c

may

�!

C

s

0

c

, there is some s

0

a

2 S

A

such that s

a

may

�!

A

s

0

a

and (s

0

a

; s

0

c

) 2 B.

This de�nition allows to abstract M

C

by M

A

by letting truth values of proposi-

tions become ? and by letting must-transitions become may-transitions, but all

may-transitions of M

C

must be preserved in M

A

. We then say that M

A

is more

abstract, or less complete, than M

C

. The inverse of the completeness preorder is

also called re�nement preorder in [19, 15, 11]. Note that relation B reduces to a

simulation relation when applied to MTSs with may-transitions only.

It can be shown that 3-valued PML logically characterizes the completeness

preorder [3, 15, 11].

Theorem 1. LetM

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) andM

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be KMTSs such that s

a

2 S

A

and s

c

2 S

C

, and let � be the set of all for-

mulas of 3-valued PML. Then,

s

a

� s

c

i� (8� 2 � : [(M

A

; s

a

) j= �] � [(M

C

; s

c

) j= �]):

In other words, KMTSs that are \more complete" with respect to � have more

de�nite properties with respect to �, i.e., have more properties that are either

true or false. Moreover, any formula � of 3-valued PML that evaluates to true or

false on a KMTS has the same truth value when evaluated on any more complete

structure. This result also holds for PML extended with �xpoint operators, i.e.,

the propositional �-calculus [3].

In [11], we showed how to adapt the abstraction mappings of [8] to construct

abstractions that are less complete than a given concrete program with respect

to the completeness preorder.

De�nition 4. LetM

C

= (S

C

; P;

must

�!

C

;

may

�!

C

; L

C

) be a (concrete) KMTS. Given

a set S

A

of abstract states and a total

1

abstraction relation on states � � S

C

�S

A

,

we de�ne the (abstract) KMTS M

A

= (S

A

; P;

must

�!

A

;

may

�!

A

; L

A

) as follows:

{ a

must

�!

A

a

0

if 8c 2 S

C

: c�a) (9c

0

2 S

C

: c

0

�a

0

^ c

must

�!

C

c

0

);

{ a

may

�!

A

a

0

if 9c; c

0

2 S

C

: c�a ^ c

0

�a

0

^ c

may

�!

C

c

0

;

{ L

A

(a; p) =

8

<

:

true if 8c : c�a) L

C

(c; p) = true

false if 8c : c�a) L

C

(c; p) = false

? otherwise

The previous de�nition can be used to build abstract KMTSs.

Theorem 2. Given a KMTS M

C

, any KMTS M

A

obtained by applying De�-

nition 4 is such that M

A

�M

C

.

Given a KMTSM

C

, any abstractionM

A

less complete thanM

C

with respect to

the completeness preorder � can be constructed using De�nition 4 by choosing

the inverse of � as B [11]. When applied to MTSs with may-transitions only, the

above de�nition coincides with traditional \conservative" abstraction. Building

a 3-valued abstraction can be done using existing abstraction techniques at the

same computational cost as building a conservative abstraction [11].

Since by construction M

A

� M

C

, any temporal-logic formula � that eval-

uates to true (resp. false) on M

A

automatically holds (resp. does not hold) on

M

C

. It is shown in [4] that computing [(M

A

; s) j= �] can be reduced to two

traditional (2-valued) model-checking problems on regular fully-de�ned systems

(such as Kripke structures or Labeled Transition Systems), and hence that 3-

valued model-checking for any temporal logic L has the same time and space

complexity as 2-valued model checking for the logic L.

However, as argued in [4], the semantics of [(M; s) j= �] returns ? more often

than it should. Consider a KMTS M consisting of a single state s such that the

1

That is, (8c 2 S

C

: 9a 2 S

A

: c�a) and (8a 2 S

A

: 9c 2 S

C

: c�a).

value of proposition p at s is ? and the value of q at s is true. The formulas

p _ :p and q ^ (p _ :p) are ? at s, although in all complete Kripke structures

more complete than (M; s) both formulas evaluate to true. This problem is not

con�ned to formulas containing subformulas that are tautological or unsatis�-

able. Consider a KMTS M

0

with two states s

0

and s

1

such that p = q = true in

s

0

and p = q = false in s

1

, and with a may-transition from s

0

to s

1

. The formula

AXp ^ :AXq (which is neither a tautology nor unsatis�able) is ? at s

0

, yet in

all complete structures more complete than (M

0

; s

0

) the formula is false. This

observation is used in [4] to de�ne an alternative 3-valued semantics for modal

logics called the thorough semantics since it does more than the other semantics

to discover whether enough information is present in a KMTS to give a de�nite

answer. Let the completions C(M; s) of a state s of a KMTS M be the set of all

states s

0

of complete Kripke structures M

0

such that s � s

0

.

De�nition 5. Let � be a formula of any two-valued logic for which a satisfaction

relation j= is de�ned on complete Kripke structures. The truth value of � in a

state s of a KMTS M under the thorough interpretation, written [(M; s) j= �]

t

,

is de�ned as follows:

[(M; s) j= �]

t

=

8

<

:

true if (M

0

; s

0

) j= � for all (M

0

; s

0

) in C(M; s)

false if (M

0

; s

0

) 6j= � for all (M

0

; s

0

) in C(M; s)

? otherwise

It is easy to see that, by de�nition, we always have [(M; s) j= �] � [(M; s) j=

�]

t

. In general, interpreting a formula according to the thorough three-valued

semantics is equivalent to solving two instances of the generalized model-checking

problem [4].

De�nition 6 (Generalized Model-Checking Problem). Given a state s of

a KMTS M and a formula � of a (two-valued) temporal logic L, does there exist

a state s

0

of a complete Kripke structure M

0

such that s � s

0

and (M

0

; s

0

) j= � ?

This problem is called generalized model-checking since it generalizes both model

checking and satis�ability checking. At one extreme, where M = (fs

0

g; P;

must

�!=

may

�!= f(s

0

; s

0

)g; L) with L(s

0

; p) =? for all p 2 P , all complete Kripke structures

are more complete thanM and the problem reduces to the satis�ability problem.

At the other extreme, where M is complete, only a single structure needs to be

checked and the problem reduces to model checking.

Algorithms and complexity bounds for the generalized model-checking prob-

lem for various temporal logics were presented in [4]. In the case of branching-

time temporal logics, generalized model checking has the same complexity in the

size of the formula as satis�ability. In the case of linear-time temporal logic, gen-

eralized model checking is EXPTIME-complete in the size of the formula, i.e.,

harder than both satis�ability and model checking, which are both PSPACE-

complete in the size of the formula for LTL. Figure 1 summarizes the complexity

results of [4]. These results show that the complexity in the size of the formula

of computing [(M; s) j= �]

t

(GMC) is always higher than that of computing

[(M; s) j= �] (MC).

Logic MC SAT GMC

Propositional Logic Linear NP-complete NP-complete

PML Linear PSPACE-complete PSPACE-complete

CTL Linear EXPTIME-complete EXPTIME-complete

�-calculus NP\co-NP EXPTIME-complete EXPTIME-complete

LTL PSPACE-complete PSPACE-complete EXPTIME-complete

Fig. 1. Known results on the complexity in the size of the formula for (2-valued and

3-valued) model checking (MC), satis�ability (SAT) and generalized model checking

(GMC).

Regarding the complexity in the size of the model jM j, it is only shown

in [4] that generalized model checking can be solved in time quadratic in jM j. In

the next two sections, we re�ne this result by presenting new upper and lower

bounds for the complexity of generalized model checking in the size of the model

for various classes of temporal properties. Our algorithms and constructions

make use of automata-theoretic techniques (e.g., see [18]). For basic notions

of automata theory (including de�nitions of nondeterministic/alternating/weak

B�uchi automata on words and trees), please refer to [18]. Let us simply recall

that a co-B�uchi acceptance condition is the dual of a B�uchi acceptance condition:

an in�nite execution w satis�es a co-B�uchi acceptance condition F if it does

not intersect the set F of (rejecting) states in�nitely often (i.e., Inf(w) \ F =

;), while an in�nite execution w satis�es a B�uchi acceptance condition F if it

intersects the set F of (accepting) states in�nitely often (i.e., Inf(w) \ F 6= ;).

3 Generalized Model Checking for LTL

We �rst consider the case of properties expressed as linear-time temporal-logic

(LTL) formulas [20]. To begin, we recall the following property of LTL: if � is

an LTL formula and (M; s) is a complete Kripke structure, (M; s) 6j= � is not

logically equivalent to (M; s) j= :�. Indeed, if L(M; s) denotes the language

of !-words represented by (M; s), the former statement is equivalent to 9w 2

L(M; s) : w 6j= � while the latter is equivalent to 8w 2 L(M; s) : w j= :�, which

in turn is equivalent to 8w 2 L(M; s) : w 6j= �.

Therefore, computing [(M; s) j= �]

t

in the LTL case reduces to only one

generalized model-checking problem, namely \does there exists a completion

(M

0

; s

0

) of (M; s) such that (M

0

; s

0

) j= �?", plus a second problem of the form

\does there exists a completion (M

0

; s

0

) of (M; s) such that (M

0

; s

0

) 6j= �?". This

second problem is easier to solve than generalized model checking.

Theorem 3. Given a state s of a KMTS M and a LTL formula �, checking

whether there exists a state s

0

of a complete Kripke structure M

0

such that s � s

0

and (M

0

; s

0

) 6j= � can be done in time linear in jM j and is PSPACE-complete in

j�j.

Proof. (Sketch)

2

For any two in�nite sequences w = a

1

a

2

: : : and w

0

= a

0

1

a

0

2

: : : , let

w � w

0

denote that 8i > 0 : 8p 2 P : L(a

i

; p) � L(a

0

i

; p). It is easy to show that

2

Complete proofs are omitted in this extended abstract due to space limitations.

9(M

0

; s

0

) : s � s

0

^ (M

0

; s

0

) 6j= � i� 9w 2 L(M;s) : 9w

0

: w � w

0

^ w

0

6j= �. The

latter condition can be reduced to checking nonemptiness of a nondeterministic B�uchi

word automaton A de�ned by a product construction of the KMTS (M; s) and of

a nondeterministic B�uchi automaton A

:�

accepting the set of !-words violating the

property �. This product construction does not distinguish may and must transitions

of M and attempts to match all of these to transitions of A

:�

; occurrences of value

? in M are matched to both values true and false in A

:�

; the size of A is therefore

linear in jM j. Checking nonemptiness of the resulting B�uchi automaton A can be done

in time linear in jAj (hence linear in jM j). By analogy with traditional model checking,

it is easy to show that the problem is also PSPACE-complete in j�j.

Computing [(M; s) j= �]

t

for an LTL formula � can thus be done using the

following procedure:

1. Check whether (M; s)�A

:�

= ;. By the previous theorem, this can be done

in time linear in jM j and is PSPACE-complete in j�j. If the outcome of this

check is positive (i.e., the product is empty), then all completions of (M; s)

satisfy �, and [(M; s) j= �]

t

= true; otherwise, continue.

2. Check whether 9(M

0

; s

0

) : s � s

0

^(M

0

; s

0

) j= � (generalized model checking).

As recalled in the previous section, this can be done in time quadratic in jM j

and is EXPTIME-complete in j�j. (Intuitively, this check is more expensive

since it requires checking that 8w 2 L(M; s) : 9w

0

: w � w

0

^ w

0

j= �, which

includes an alternation of 8 and 9.) If the outcome of this check is positive,

we have [(M; s) j= �]

t

=?; otherwise, all completions of (M; s) violate �,

and [(M; s) j= �]

t

= false.

Because Step 2 of the above procedure requires solving an instance of the gener-

alized model-checking problem, the time needed to compute [(M; s) j= �]

t

using

the generalized model-checking algorithm of [4] can be quadratic in jM j. Unfor-

tunately, the lower bound provided by the following theorem shows that it is

unlikely this quadratic complexity can be reduced in the general case.

Theorem 4. The problem of checking emptiness of nondeterministic B�uchi tree

automata is reducible in linear time and logarithmic space to the generalized

model-checking problem for LTL properties represented by nondeterministic B�uchi

word automata.

Since the worst-case run-time complexity of the best known algorithm for check-

ing emptiness of nondeterministic B�uchi tree automata is quadratic in the size of

the automaton [24], it is therefore unlikely that the generalized model-checking

problem for LTL can be solved using better than quadratic time in jM j in the

worst case.

However, we now identify an important class of LTL formulas for which the

generalized model-checking problem can be solved in time linear in jM j. This

class is the class of persistence properties [20]. Persistence properties can be

represented by LTL formulas of the form 32 p (where 3 is read \eventually"

and 2 is read \always" [20]). Persistence properties also correspond to languages

of !-words recognizable by co-B�uchi automata.

Theorem 5. The generalized model-checking problem for LTL persistence prop-

erties can be solved in time linear in the size of the model.

Proof. (Sketch) Every persistence property can be represented by a co-B�uchi automa-

ton A

�

. A

�

can then easily be transformed into a weak (B�uchi or co-B�uchi) non-

deterministic automaton A

0

�

accepting the same language and of size linear in jA

�

j.

Generalized model checking can then be reduced to checking emptiness of an alternat-

ing B�uchi word automaton A

(M;s

0

);�

over a 1-letter alphabet de�ned using a product

construction of the KMTS (M; s

0

) and the weak B�uchi automaton A

0

�

. If A

0

�

is weak,

A

(M;s

0

);�

is also weak. Moreover, the size of A

(M;s

0

);�

is linear in jM j. Since check-

ing emptiness of a weak alternating B�uchi word automaton over a 1-letter alphabet

can be done in linear time [18], we obtain a decision procedure for the generalized

model-checking problem of LTL persistence properties that is linear in jM j.

Of practical interest, persistence properties include all safety properties (LTL

formulas of the form 2 p), as well as guarantee properties (LTL formulas of

the form 3 p) and obligation properties (boolean combinations of safety and

guarantee properties) [20]. Examples of LTL properties that are not persistence

properties are response properties (LTL formulas of the form 23 p).

4 Generalized Model Checking for BTL

We now consider the case of branching-time temporal logics (BTL) such as

propositional modal logic (e.g., see [23]), CTL [5] or the propositional �-calculus [17].

In the case of a BTL formula �, computing [(M; s) j= �]

t

reduces to two general-

ized model-checking problems, namely \does there exist two completions (M

0

; s

0

)

and (M

00

; s

00

) of (M; s) such that (M

0

; s

0

) j= � and (M

00

; s

00

) 6j= �?", the latter

statement being equivalent to (M

00

; s

00

) j= :�.

Given a CTL formula �, the worst-case run-time complexity of computing

[(M; s) j= �]

t

for a CTL formula � using the generalized model-checking algo-

rithm of [4] is quadratic in jM j. The next theorem provides a lower bound similar

to the one given in Theorem 4 in the LTL case.

Theorem 6. The problem of checking emptiness of nondeterministic B�uchi tree

automata is reducible in linear time and logarithmic space to the generalized

model-checking problem for CTL properties represented by nondeterministic B�uchi

tree automata.

As in the LTL case, we can identify classes of properties for which generalized

model checking can be done in time linear in jM j.

Theorem 7. The generalized model-checking problem for BTL properties recog-

nizable by nondeterministic co-B�uchi tree automata can be solved in time linear

in the size of the model.

Proof. (Sketch) BTL properties recognizable by nondeterministic co-B�uchi tree au-

tomata are also recognizable by weak tree automata. One can then use a product

construction of such a weak tree automaton with a KMTS M to de�ne a weak alter-

nating B�uchi word automaton A over a 1-letter alphabet and of size linear in jM j such

that generalized model checking can be reduced to checking emptiness of this alternat-

ing automaton. A key observation to prove the linear bound on jM j is that generalized

model checking on a KMTS M can be reduced to generalized model checking on a

PKS M

0

of size linear in M , hence showing that not all (exponentially many) subsets

of may-transitions of M need be considered when checking branching properties of the

set of all possible completions of M . Since checking emptiness of a weak alternating

B�uchi word automaton over a 1-letter alphabet can be done in linear time [18], we

obtain a decision procedure for generalized model-checking that is linear in jM j.

The previous theorem generalizes Theorem 5 since tree automata are generaliza-

tions of word automata. Examples of CTL properties that are recognizable by

nondeterministic co-B�uchi tree automata are AGp and EFp. In contrast, CTL

formulas such as AGAFp and AGEFp are not recognizable by co-B�uchi tree

automata. As a corollary to the previous theorem, it is easy to show that the

generalized model checking for any PML formula can be solved in linear time in

jM j. Finally note that in order to compute [(M; s) j= �]

t

in time linear in jM j,

both � and :� need be recognizable by co-B�uchi tree automata.

5 Application to Automatic Abstraction

The usual procedure for performing veri�cation via predicate abstraction and

iterative abstraction re�nement is the following (e.g., see [1, 9]).

1. Abstract: compute an abstractionM

A

that simulates the concrete prgmM

C

.

2. Check: given a universal property �, decide whether M

A

j= �.

{ if M

A

j= �: stop (the property is proved: M

C

j= �).

{ if M

A

6j= �: go to Step 3.

3. Re�ne: re�ne M

A

(possibly using a counter-example found in Step 2). Then

go to Step 1.

Since M

A

simulates M

C

, one can only prove the correctness of universal prop-

erties (i.e., properties over all paths) of M

C

by analyzing M

A

in Step 2. Note

that the three steps above can also be interleaved and performed in a strict

demand-driven fashion as described in [13].

The purpose of this paper is thus to advocate a new procedure for automatic

abstraction.

1. Abstract: compute an abstraction M

A

using Def. 4 such that M

A

�M

C

.

2. Check: given any property �,

(a) (3-valued model checking) compute [M

A

j= �].

{ if [M

A

j= �] = true or false: stop (the property is proved (resp.

disproved) on M

C

).

{ if [M

A

j= �] =?, continue.

(b) (generalized model checking) compute [M

A

j= �]

t

.

{ if [M

A

j= �]

t

= true or false: stop (the property is proved (resp.

disproved) on M

C

).

{ if [M

A

j= �] =?, go to Step 3.

3. Re�ne: re�ne M

A

(possibly using a counter-example found in Step 2). Then

go to Step 1.

This new procedure strictly generalizes the traditional one in several ways. First,

any temporal logic formula can be checked (not just universal properties). Sec-

ond, all correctness proofs and counter-examples obtained by analyzing any ab-

straction M

A

such that M

A

� M

C

are guaranteed to be sound (i.e., hold on

M

C

) for any property (by Theorem 1 of Section 2). Third, veri�cation results

can be more precise than with the traditional procedure: the new procedure will

not only return true whenever the traditional one returns true (trivially, since

the former includes the latter), but it can also return true more often thanks

to a more thorough check using generalized model-checking, and it can also re-

turn false. The new procedure can thus terminate sooner and more often than

the traditional procedure | the new procedure will never loop through its 3

steps more often than the traditional one. Remarkably, each of the 3 steps of

the new procedure can be performed at roughly the same cost as the corre-

sponding step of the traditional procedure: as shown in [11], building a 3-valued

abstraction using De�nition 4 (Step 1 of new procedure) can be done at the

same computational cost as building a conservative abstraction (Step 1 of tradi-

tional procedure); computing [M

A

j= �] in Step 2.a can be done at the same cost

at traditional (2-valued) model checking [4]; following the results of Sections 3

and 4, computing [M

A

j= �]

t

in Step 2.b can be more expensive than Step 2.a,

but is still polynomial (linear or quadratic) in the size of M

A

; Step 3 of the

new procedure is similar to Step 3 of the traditional one (in the case of LTL

properties for instance, re�nement can be guided by error traces found in Step 2

as in the traditional procedure). Finally note that the new procedure could also

be adapted so that the di�erent steps are performed in a demand-driven basis

following the work of [13].

6 Examples

We now give examples of programs, models and properties where computing

[(M; s) j= �]

t

returns a more precise answer than [(M; s) j= �].

Consider the three programs shown in Figure 2, where x and y denote vari-

ables, and f denotes some unknown function. The notation \x,y = 1,0" means

variables x and y are simultaneously assigned to values 1 and 0, respectively.

Consider the two predicates p : \is x odd?" and q : \is y odd?". Figure 2 shows

an example of KMTS model for each of the three programs. These models can

be computed automatically using De�nition 4, predicate abstraction techniques

and predicates p and q, so that by construction they satisfy Theorem 2. Each

model is a KMTS with must-transitions only and with atomic propositions p

and q whose truth value is de�ned in each state as indicated in the �gure.

program C1() f program C2() f program C3() f

x,y = 1,0; x,y = 1,0; x = 1;

x,y = f(x),f(y); x,y = 2*f(x),f(y); x = f(x);

x,y = 1,0; x,y = 1,0; g

g g

(p=T,q=F)

M2M1 M3

s2

⊥

(p=T)
s3

(p=T,q=F)

s2’

s2’’

(p=)(p= ,q=)⊥ ⊥

s1

(p=T,q=F)

(p=T,q=F)

(p=F,q=)⊥

Fig. 2. Examples of programs and models

Consider the LTL formula �

1

= 3 q) 2(p _ q). While [(M

1

; s

1

) j= �

1

] =?,

[(M

1

; s

1

) j= �

1

]

t

= true. In other words, using the thorough interpretation yields

a more de�nite answer in this case. Note that the gain in precision obtained in

this case is somewhat similar to the gain in precision that can be obtained using

an optimization called focusing [1] aimed at recovering some of the imprecision

introduced when using cartesian abstraction (see [1, 11]).

Consider now the formula �

2

= 3 q ^ 2(p _ :q) evaluated on (M

2

; s

2

). In

this case, we have [(M

2

; s

2

) j= �

2

] =?, while [(M

2

; s

2

) j= �

2

]

t

= false. Again,

using the thorough interpretation yields a more de�nite answer, although solving

a generalized model-checking problem is necessary to return a negative answer.

Indeed, one needs to prove in this case that there exists a computation of (M

2

; s

2

)

(namely s

2

s

0

2

s

00

2

!

{ there is only one computation in this simple example) that

does not have any completion satisfying �

2

, which itself requires using alternating

automata and can thus be more expensive as discussed in Section 3. Another

example of formula is �

0

2

=

q^2(p_:q) (where

is read \next" [20]). Again

we have that [(M

2

; s

2

) j= �

0

2

] =?, while [(M

2

; s

2

) j= �

0

2

]

t

= false. Note that,

although �

0

2

is an LTL safety formula and hence is within the scope of analysis

of existing tools ([2], [6], etc.), none of these tools can prove that �

0

2

does not

hold: this result can only be obtained using generalized model checking.

Last, consider (M

3

; s

3

) and formula �

3

= 2 p. In this case, we have both

[(M

3

; s

3

) j= �

3

] = [(M

3

; s

3

) j= �

3

]

t

=?, and the thorough interpretation cannot

produce a more de�nite answer than the standard 3-valued interpretation.

7 Conclusions

We have introduced generalized model checking as a way to improve precision

of automatic abstraction for the veri�cation of temporal properties of programs.

In this context, generalized model checking means checking whether there exists

a concretization of an abstraction M that satis�es a temporal logic formula �.

We believe generalized model checking is quite practical despite its seem-

ingly higher complexity than that of model checking. Indeed, a higher worst-

case complexity in the size of the formula (for instance, EXPTIME-complete

instead of PSPACE-complete for LTL formulas) may not be too troublesome

since formulas are usually quite short and checking algorithms typically behave

better than the worst case in practice. Perhaps more importantly, we showed

in this paper that generalized model checking may require in general quadratic

time in the size of the abstraction, which may be a more severe limitation, but

that it can be solved in linear time for important classes of properties including

safety properties. In any case, generalized model checking can help an iterative

\abstract-check-re�ne" veri�cation process terminate sooner and more often by

providing better analysis precision for a cost only polynomial in the size of the

abstraction, which in turn may prevent the unnecessary generation and analysis

of possibly exponentially larger re�nements of that abstraction.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction

for Model Checking C Programs. In Proceedings of TACAS'2001 (Tools and Al-

gorithms for the Construction and Analysis of Systems), volume 2031 of Lecture

Notes in Computer Science. Springer-Verlag, April 2001.

2. T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of CAV'2001 (13th

Conference on Computer Aided Veri�cation), Paris, July 2001.

3. G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued

Temporal Logics. In Proceedings of the 11th Conference on Computer Aided Veri�-

cation, volume 1633 of Lecture Notes in Computer Science, pages 274{287, Trento,

July 1999. Springer-Verlag.

4. G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial

State Spaces. In Proceedings of CONCUR'2000 (11th International Conference on

Concurrency Theory), volume 1877 of Lecture Notes in Computer Science, pages

168{182, University Park, August 2000. Springer-Verlag.

5. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-

tons using Branching-Time Temporal Logic. In D. Kozen, editor, Proceedings of the

Workshop on Logic of Programs, Yorktown Heights, volume 131 of Lecture Notes

in Computer Science, pages 52{71. Springer-Verlag, 1981.

6. J. C. Corbett, M. B. Dwyer, J. Hatcli�, S. Laubach, C. S. Pasareanu, Robby, and

H. Zheng. Bandera: Extracting Finite-State Models from Java Source Code. In

Proceedings of the 22nd International Conference on Software Engineering, 2000.

7. P. Cousot and R. Cousot. Temporal Abstract Interpretation. In Proceedings of

the 27th ACM Symposium on Principles of Programming Languages, pages 12{25,

Boston, January 2000.

8. D. Dams. Abstract interpretation and partition re�nement for model checking. PhD

thesis, Technische Universiteit Eindhoven, The Netherlands, 1996.

9. S. Das and D. L. Dill. Successive Approximation of Abstract Transition Rela-

tions. In Proceedings of LICS'2001 (16th IEEE Symposium on Logic in Computer

Science), pages 51{58, Boston, June 2001.

10. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In

Proceedings of the 24th ACM Symposium on Principles of Programming Languages,

pages 174{186, Paris, January 1997.

11. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model Checking

using Modal Transition Systems. In Proceedings of CONCUR'2001 (12th Inter-

national Conference on Concurrency Theory), volume 2154 of Lecture Notes in

Computer Science, pages 426{440, Aalborg, August 2001. Springer-Verlag.

12. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Pro-

ceedings of the 9th International Conference on Computer Aided Veri�cation, vol-

ume 1254 of Lecture Notes in Computer Science, pages 72{83, Haifa, June 1997.

Springer-Verlag.

13. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Pro-

ceedings of the 29th ACM Symposium on Principles of Programming Languages,

Portland, January 2002.

14. G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven

Software. In Proceedings of the 21st International Conference on Software Engi-

neering, pages 597{607, 1999.

15. M. Huth, R. Jagadeesan, and D. Schmidt. Modal Transition Systems: a Foundation

for Three-Valued Program Analysis. In Proceedings of the European Symposium on

Programming (ESOP'2001), volume 2028 of Lecture Notes in Computer Science.

Springer-Verlag, April 2001.

16. S. C. Kleene. Introduction to Metamathematics. North Holland, 1987.

17. D. Kozen. Results on the Propositional Mu-Calculus. Theoretical Computer Sci-

ence, 27:333{354, 1983.

18. O. Kupferman, M. Y. Vardi, and P. Wolper. An Automata-Theoretic Approach

to Branching-Time Model Checking. Journal of the ACM, 47(2):312{360, March

2000.

19. K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proceedings of Third

Annual Symposium on Logic in Computer Science, pages 203{210. IEEE Computer

Society Press, 1988.

20. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Speci�cation. Springer-Verlag, 1992.

21. K. S. Namjoshi and R. K. Kurshan. Syntactic Program Transformations for Au-

tomatic Abstraction. In Proceedings of the 12th Conference on Computer Aided

Veri�cation, volume 1855 of Lecture Notes in Computer Science, pages 435{449,

Chicago, July 2000. Springer-Verlag.

22. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-

Verlag, 1999.

23. M.Y. Vardi. Why is Modal Logic So Robustly Decidable? In Proceedings of DI-

MACS Workshop on Descriptive Complexity and Finite Models. AMS, 1997.

24. M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of

Programs. Journal of Computer and System Science, 32(2):183{221, April 1986.

25. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In

Proceedings of ASE'2000 (15th International Conference on Automated Software

Engineering), Grenoble, September 2000.

