
Symmetry and Reduced Symmetry

in Model Checking

?

A. Prasad Sistla

1

Patrice Godefroid

2

1

University of Illinois at Chicago, Department of Electrical Engineering and

Computer Science, Chicago, IL 60607, USA

2

Bell Laboratories, Lucent Technologies, Naperville, IL 50566, USA

Abstract. Symmetry reduction methods exploit symmetry in a system

in order to e�ciently verify its temporal properties. Two problems may

prevent the use of symmetry reduction in practice: (1) the property to

be checked may distinguish symmetric states and hence not be preserved

by the symmetry, and (2) the system may exhibit little or no symmetry.

In this paper, we present a general framework that addresses both of

these problems. We introduce \Guarded Annotated Quotient Structures"

for compactly representing the state space of systems even when those

are asymmetric. We then present algorithms for checking any temporal

property on such representations, including non-symmetric properties.

1 Introduction

In the last few years there has been much interest in symmetry-based reduction

methods for model checking concurrent systems [10, 2, 4, 5, 8, 12]. These methods

exploit automorphisms, of the global state graph of the system to be veri�ed,

induced by permutations on process indices and variables. Existing symmetry-

reduction methods, for veri�cation of a correctness property given by a temporal

formula �, can be broadly classi�ed into two categories: the �rst class of meth-

ods [2, 4, 10, 12] consider only those automorphisms that preserve the atomic

predicates appearing in �, construct a Quotient Structure (QS) and check the

formula � on the QS using traditional model-checking algorithms; the second

class of methods [5] consider all automorphisms, induced by process/variable

permutations, and construct an Annotated Quotient Structure (AQS), and un-

wind it to verify the formula �.

In this paper, we generalize symmetry-based reduction in several ways. First,

the mathematical framework, used to formalize symmetry reduction, supports

any automorphism on the system's state graph; for example, automorphisms

induced by permutations on variable-value pairs can be considered in addition

to those induced by permutations on process indices and variables. Thus, this

framework allows for more automorphisms and hence greater reduction.

?

Sistla's work is supported in part by the NSF grant CCR-9988884 and was partly

done while visiting Bell Laboratories.

Second, we introduce the notion of Guarded Annotated Quotient Structure

(GQS) to represent, in a very compact way, the state graph of systems with

little or even no symmetry. In a nutshell, a GQS is an AQS whose edges are

also associated with a guard representing the condition under which the cor-

responding original program transition is executable. Given a program P and

its reachability graph G, by adding edges to G (via a transformation of P), we

obtain another graph H that has more symmetry than G, and hence can be

represented more compactly. A GQS for G can be viewed as an AQS for H

whose edges are labeled with guards in such a way that the original edges of G

can be recovered from the representation of H . To verify a temporal formula �,

the GQS is unwound as needed, by tracking the values of the atomic predicates

in � and the guards of the GQS, so that only edges in G are considered. The

GQS of G can be much smaller than its QS because it is de�ned from a larger

set of automorphisms: a GQS is derived by considering all the automorphisms

of H , which exhibits more symmetry than G, including those automorphisms

that do not preserve the atomic predicates in �. We show that unwinding GQS

on-demand, in order to verify a property �, can be done without ever generating

a structure larger than QS.

Third, we present two new techniques for further optimizing the model-

checking procedure using GQSs. These techniques minimize the amount of un-

winding necessary to check a formula � and may yield an exponential improve-

ment in performance. The �rst technique, called formula decomposition, consists

of decomposing � into groups of top-level sub-formulas so that atomic predi-

cates with in a group are correlated; the satisfaction of � can then be checked

by checking each group of sub-formulas separately, which in turn can be done by

successively unwinding the GQS with respect to only the predicates appearing in

each group separately; therefore, unwinding GQS with respect to all the atomic

predicates appearing in � simultaneously can be avoided. The second technique,

called sub-formula tracking, consists of identifying a maximal set of \indepen-

dent" sub-formulas of � and unwinding the GQS by tracking these sub-formulas

only. These two complementary techniques can be applied recursively.

The paper is organized as follows. Section 2 introduces the background infor-

mation and notation. Section 3 introduces GQS and the model-checking method

employing it. Section 4 presents the techniques based on formula decomposition

and sub-formula tracking. Section 5 presents preliminary experimental results.

Section 6 contains concluding remarks and related work. Proofs of theorems are

omitted due to space limitations.

2 Background

A Kripke structure K is a tuple (S;E;P ; L) where S is a set of elements, called

states, E � S � S is a set of edges, P is a set of atomic propositions and

L : S ! 2

P

is a function that associates a subset of P with each state in S. CTL

�

is a logic for specifying temporal properties of concurrent programs (e.g., see [3]).

It includes the temporal operators U (until), X (nexttime) and the existential

path quanti�er E. Two types of CTL

�

formulas are de�ned inductively: path

formulas and state formulas. Every atomic proposition is a state formula as well

as a path formula. If p and q are state formulas (resp., path formulas) then p^ q

and :p are also state formulas (resp., path formulas). If p and q are path formulas

then pUq, Xp are path formulas and E(p) is a state formula. Every state formula

is also a path formula. We use the abbreviation EF(p) for E(TrueUp) and AG(p)

for :(EF:p). A CTL

�

formula is a state formula. CTL is the fragment of CTL

�

where all path formulas are of the form pUq or of the form Xp where p; q are state

formulas. CTL

�

formulas are interpreted over Kripke structures (e.g, see [3] for

a detailed presentation of the semantics of CTL

�

).

Let K = (S;R;P ; L) and K

0

= (S

0

; R

0

;P ; L

0

) be two Kripke structures

with the same set of atomic propositions. A bisimulation between K and K

0

is a binary relation U � S � S

0

such that, for every (s; s

0

) 2 U , the following

conditions are all satis�ed: (1) L(s) = L

0

(s

0

); (2) for every t such that (s; t) 2 R,

there exists t

0

2 S

0

such that (t; t

0

) 2 U and (s

0

; t

0

) 2 R

0

; and (3) for every t

0

such that (s

0

; t

0

) 2 R

0

, there exists t 2 S such that (t; t

0

) 2 U and (s; t) 2 R. We

say that a state s 2 S is bisimilar to a state s

0

2 S

0

, if there exists a bisimulation

U between K and K

0

such that (s; s

0

) 2 U . It is well-known that bisimilar states

satisfy the same CTL

�

formulas.

We de�ne a predicate over a set S as a subset of S. Let � be a bijection

on S, i.e., a one-to-one mapping from S to S. Let C be a predicate over S.

Let f(C) denote the set ff(x) : x 2 Cg. Let f

�1

denote the inverse of the

bijection �. If f; g are two bijections then we let fg denote their composition in

that order; note that in this case, fg is also a bijection. Throughout the paper

we use the following identity relating the inverse and composition operators:

(fg)

�1

= g

�1

f

�1

.

Let G = (S;E) be the reachability graph of a concurrent program where

S denotes a set of nodes/states and E � S � S. An automorphism of G is a

bijection on S such that, for all s; t 2 S, (s; t) 2 E i� (f(s); f(t)) 2 E. We say

that an automorphism respects a predicate C over S if f(C) = C. The set of

all automorphisms of a graph forms a group Aut(G). Given a set P

1

; :::; P

k

of

predicates over S, the set of automorphisms of G that respect P

1

; :::; P

k

form a

subgroup of Aut(G).

Let G be a group of automorphisms of G. We say that states s; t 2 S are

equivalent, denoted by s �

G

t, if there exists some f 2 G such that t = f(s).

As observed in [2, 4, 10], �

G

is an equivalence relation. A quotient structure of

G with respect to G is a graph (

�

S;

�

E) where

�

S contains exactly one node in

each equivalence class of �

G

and (�s;

�

t) 2

�

E i� there exists some t such that

t �

G

�

t and (�s; t) 2 E. Each state �s 2

�

S represents all states in S that belong

to its equivalence class. Di�erent quotient structures can be de�ned by choosing

di�erent representatives for each equivalence class. However, all these structures

are isomorphic. We denote by rep(s;G) the representative element of the equiv-

alence class to which s belongs. In what follows, QS(G;G) denotes the quotient

structure obtained by choosing a unique representative for each equivalence class.

A predicate P on the edges of G is a subset of S � S. We say that an edge

(s; t) in E, satis�es P if (s; t) 2 P . Let True denote the set S � S. For an edge

predicate P and automorphism � on states, let f(P) = f(f(s); f(t)) : (s; t) 2 Pg.

Given a group G of automorphisms on G, we can extend the equivalence relation

�

G

from states in S to edges in E as follows: two edges e = (s; t) and e

0

= (s

0

; t

0

)

are equivalent (written as e �

G

e

0

) if there exists some g 2 G such that s

0

= g(s)

and t

0

= g(t). It is easy to see that �

G

on E is an equivalence relation [9].

3 Model Checking using Guarded Annotated Quotient

Structures

In this section, we introduce Guarded Annotated Quotient Structures (GQS) as

extensions of Annotated Quotient Structures considered in [4, 5]. These struc-

tures can be de�ned with respect to arbitrary automorphisms and can compactly

represent the state space of systems that contain little symmetry. For example,

consider a resource allocation system composed of a resource controller and three

identical user processes, named a, b and c. When multiple user processes request

the resource at the same time, the controller process allocates it to one of the re-

questing users according to the following priority scheme: user a is given highest

priority while users b and c have the same lower priority. This system exhibits

some symmetry since users b and c are \interchangeable". Now consider a similar

system but where the three user processes are given equal priority. This system

exhibits more symmetry since all three users are now \interchangeable". Thus,

the system without priorities has more symmetry than the system with prior-

ities. A guarded annotated quotient structure allows us to verify systems with

reduced symmetry (e.g., a system with priorities) by treating these as if they

had more symmetry (e.g., a system without priorities) and without compromis-

ing the accuracy of the veri�cation results. For instance, in the state graph G,

of the above resource allocation system with priorities, a state s where all three

users have requested the resource has only one outgoing edge (granting the re-

source to user a). By adding two other edges from s (granting the resource to

the two other user processes), the state graph H of the system without priorities

can be de�ned. Since H exhibits more symmetry than G, it can be veri�ed more

e�ciently. Thus, by viewing G as H extended with guards so that G can be

re-generated if needed, model checking can be done more e�ciently.

Formally, letH = (S; F) be a graph such that F � E and Aut(G) � Aut(H),

i.e., H is obtained by adding edges to G = (S;E) such that every automorphism

of G is also an automorphism of H .

1

Let H;G be groups of automorphisms

of H and G, respectively, such that H � G. As indicated earlier, �

H

de�nes

equivalence relations on the nodes and edges of H . For any edge e 2 F , let

Class(e;H) denote the set of edges in the equivalence class of e de�ned by �

H

.

Let Q = fQ

1

; :::; Q

l

g be a set of predicates on S such that each automorphism in

1

Our results can easily be extended to allow the addition of nodes as well as edges.

Note that adding edges/nodes to a graph may sometimes reduce symmetry.

G also respects all the predicates in Q. Let QS(G;G) = (

�

U;

�

E) be the quotient

structure of G with respect to G as de�ned earlier.

A Guarded Annotated Quotient Structure of H = (S; F) with respect to H,

denoted by GQS(H;H), is a triple (

�

V ;

�

F ;C) where

�

V � S is a set of states that

contains one representative for each equivalence class of states de�ned by �

H

on

S,

�

F �

�

V �

�

V �H is a set of labeled edges such that, for every �s 2

�

V and t 2 S

such that (�s; t) 2 F , there exists an element (�s;

�

t; f) 2

�

F such that f(

�

t) = t, and

C is a function that associates a predicate C(e) with each labeled edge e 2

�

F

such that (1) C(e)\Class(e;H) = E \Class(e;H) (i.e., C(e) denotes all edges

in Class(e;H) that are edges in the original graph G) and (2), for all g 2 G,

g(C(e)) = C(e) (i.e., g respects the edge predicate C).

Given a labeled edge e = (�s;

�

t; f) 2

�

F , f 2 H is called the label of e and

denotes an automorphism that can be used to obtain the corresponding original

edge in F ; the edge predicate C(e) can in turn be used to determine whether

this edge is also an edge of G. Labels of edges in

�

F and the edge predicate C are

used to unwind GQS(H;H) when necessary during model checking, as described

later. Note that edge predicates C that satisfy the above conditions always exist:

for instance, taking C(e) = E always satis�es the de�nition. In practice, a

compact representation of an edge predicate C satisfying the conditions above

can be obtained directly from the description of the concurrent program. For

example, in the case of the resource allocation system, the edge predicate C(e)

is de�ned as follows: if the labeled edges e denotes the allocation of the resource

to a user, then C(e) asserts that if there is a request from user a then a is

allocated the resource; for all other labeled edges, C(e) is the predicate True.

Similarly, the automorphisms labeling edges in

�

F can also have succinct implicit

representations. For example, any automorphism induced by permutations of

n process indices as considered in [4, 5, 8] can be represented by an array of n

variables ranging over n. Tools like SMC [14] and Murphi [10] includes optimized

algorithms for representing and manipulating such sets of permutations.

Given a set Q of predicates over S that are all respected by the automor-

phisms in G, we de�ne three Kripke structures K Stru(G;Q), QS Stru(G;G;Q)

and GQS Stru(H;H;Q) derived from G = (S; F), QS(G;G) = (

�

U;

�

E) and

GQS(H;H) = (

�

V ;

�

F;C), respectively. We show that these three Kripke struc-

tures are pairwise bisimilar, and hence can all be used for CTL

�

model checking.

Since G is a subgroup of H, each equivalence class of �

H

is a union of smaller

equivalences classes de�ned by �

G

. Thus, the number of equivalence classes of

�

H

is smaller than those of �

G

, and GQS(H;H) contains (possibly exponen-

tially) fewer nodes than QS(G;G). QS(G;G) itself can be much smaller than

G.

For each predicate Q

j

(1 � j � l) in Q, we introduce an atomic proposition

denoted q

j

. Let X = fq

i

: 1 � i � lg. Let K Stru(G;Q) denote the Kripke

structure (S;E;X ; L) where for any s 2 S, L(s) = fq

j

: s 2 Q

j

g. The Kripke

structure QS Stru(G;G;Q) is given by (

�

U;

�

E;X ;M) where M(�s) = fq

j

: �s 2

Q

j

g. The following theorem has been proven in [4, 2, 10].

Theorem 1. There exists a bisimulation between the structures K Stru(G;Q)

and QS Stru(G;G;Q) such that every state s 2 S is bisimilar to its representa-

tive in

�

U .

Therefore, any CTL

�

formula over atomic propositions in X is satis�ed at

a state s in K Stru(G;Q) i� it is satis�ed at its representative rep(s;G) in

QS Stru(G;G;Q).

If the edge predicate C is implicitly represented by a collection of edge pred-

icates �

1

; :::; �

r

, the Kripke structure GQS Stru(H;H;Q) is obtained from

GQS(H;H) by partially unwinding it and by tracking the node predicates in

Q (i.e., the predicates Q

1

; :::; Q

l

) and the edge predicates �

1

; :::; �

r

during this

unwinding process. In other words, the unwinding is performed with respect to

the predicates Q

1

; :::; Q

l

and �

1

; :::; �

r

, not with respect to the states of G, in

order to limit the unwinding as much as possible. This partial unwinding can

be viewed as a particular form of \predicate abstraction", and is a generaliza-

tion of the unwinding process described in [4, 5]. Precisely, the Kripke structure

GQS Stru(H;H;Q) is the tuple (W;T;X ; N) where W;T and N are de�ned as

follows:

{ For all �s 2

�

V , (�s;Q

1

; :::; Q

l

; �

1

; :::; �

r

) 2W .

{ Let u = (�s;X

1

; ::::; X

l

; �

1

; :::; �

r

) be any node in W , e = (�s;

�

t; f) be a

labeled edge in

�

F and j be an integer such that �

j

is the edge predicate

C(e). Further, assume that the edge (�s; f(

�

t)) satis�es the predicate �

j

. For

all such u and e, the node v = (

�

t; f

�1

(X

1

); :::; f

�1

(X

l

); f

�1

(�

1

); :::; f

�1

(�

r

))

is in W and the edge (u; v) is in T .

{ For all u = (�s;X

1

; ::::; X

l

; �

1

; :::; �

r

) 2W , N(u) = fq

i

: �s 2 X

i

g.

The following theorem states that QS Stru(G;G;Q) and GQS Stru(H;H;Q)

are bisimilar.

Theorem 2. Given QS Stru(G;G;Q) and GQS Stru(H;H;Q) as previously

de�ned, let Z �

�

U �W be a binary relation de�ned such that (s; u) 2 Z i� there

exists an automorphism f 2 H such that f(t) = s and u = (t; f

�1

(Q

1

); :::;

f

�1

(Q

l

); f

�1

(�

1

); :::; f

�1

(�

r

)). Then, the following properties hold:

1. Z is a bisimulation between QS Stru(G;G;Q) and GQS Stru(H;H;Q).

2. For all u 2W , there exists a node s 2

�

U such that (s; u) 2 Z.

3. Two nodes u = (t;X

1

; :::; X

l

;�

1

; :::; �

r

) and u

0

= (t

0

; Y

1

; :::; Y

l

;�

1

; :::; �

r

)

of GQS Stru(H;H;Q) are related to a single node s of QS Stru(G;G;Q)

through Z i� t = t

0

and there exists some h in H such that h(t) = t and

X

i

= h(Y

i

) for all i = 1; :::; l, and �

j

= h(�

j

) for all j = 1; :::; r.

From the previous theorem, we see that multiple nodes in GQS Stru(H;H;Q)

can be related through Z to a single node in QS Stru(G;G;Q). Hence, in princi-

ple,GQS Stru(H;H;Q) can sometimes have more nodes thanQS Stru(G;G;Q).

The following construction can be used to further reduce the number of nodes

in GQS Stru(H;H;Q) so that the reduced structure has no more nodes than

QS Stru(G;G;Q). First, observe that all the nodes in GQS Stru(H;H;Q) that

are related through Z to a single node s in QS Stru(G;G; Q) can be repre-

sented by a single node since they are all bisimilar to each other. The algo-

rithm for generating GQS Stru(H;H;Q) can be modi�ed to apply this reduc-

tion to construct a smaller Kripke structure Greduced Stru(H;H;Q). Nodes in

GQS Stru(H;H;Q) that are related to a single node in QS Stru(G;G;Q) can

be detected by evaluating the condition stated in Part 3 of Theorem 2. It can

be shown that, if G is the maximal subgroup of H consisting of all automor-

phisms of G that respect Q

1

; :::; Q

l

, then Greduced Stru(H;H;Q) has the same

number of nodes as QS Stru(G;G;Q) and Z de�nes an isomorphism between

the two structures; otherwise, Greduced Stru(H;H;Q) has fewer nodes than

QS Stru(G;G;Q).

In summary, the procedure for incrementally constructing the reachable part

of Greduced Stru(H;H;Q) from GQS(G;H) is the following. We maintain a set

To explore of nodes that have yet to be treated. Initially, To explore contains

nodes of the form (s

0

; Q

1

; :::; Q

l

;�

1

; :::; �

r

) where s is the representative of an

equivalence class containing an initial state. We iterate the following procedure

until To explore is empty. We remove a node u = (t;X

1

; :::; X

l

;�

1

; :::; �

r

) from

To explore. For each labeled edge e = (t; t

0

; f) in GQS(G;H), we check if the

edge (t; f(t

0

)) satis�es the edge predicate �

j

, where j is the index such that

�

j

is the edge predicate C(e). If this condition is satis�ed we do as follows. We

construct the node v = (t

0

; Y

1

; :::; Y

l

; �

1

; :::; �

r

) where Y

i

= f

�1

(X

i

) for 1 � i � l

and �

j

= f

�1

(�

j

) for 1 � j � r. Then, we check if there exists a node w =

(t

0

; Z

1

; :::; Z

l

;	

1

; :::; 	

r

) in the partially constructedGreduced Stru(H;H;Q) and

a h 2 H such that t

0

= h(t

0

) and Z

i

= h(Y

i

) for all i = 1; :::; l, and 	

j

= h(�

j

)

for all j = 1; :::; r (i.e., the condition of Part 3 of Theorem 2 is checked). If this

condition is satis�ed, we add an edge from u to w; otherwise, we add v as a new

node, include it in To explore and add an edge from u to v.

Consider a CTL

�

formula � de�ned over a set prop(�) of atomic propositions

that each corresponds to a predicate in Q. Let pred(�) � Q denote the set of

predicates corresponding to prop(�). From Theorem 2, it is easy to see that the

formula � is satis�ed at node s in K Stru(G;Q) i� it is satis�ed at the node

u = (rep(s;H); f

�1

(R

1

); :::; f

�1

(R

m

); f

�1

(�

1

); :::; f

�1

(�

r

)) in the structure

GQS Stru(H;H;R) where f is the automorphism such that s = f(rep(s;H)).

Thus, model checking the CTL

�

formula � can be done on the Kripke struc-

tures GQS Stru(H;H; pred(�)) or Greduced Stru(H;H; pred(�)) obtained by

unwinding GQS(H;H) with respect to the set pred(�) of predicates only. Let

us call this the direct approach.

4 Formula Decomposition and Sub-formula Tracking

In this section, we discuss two complementary techniques that can improve the

direct approach of the previous section.

4.1 Formula Decomposition

Any CTL

�

state formula � can be rewritten as a boolean combination of atomic

propositions and existential sub-formulas of the form E�

0

. Let Eform(�) denote

the set of existential sub-formulas of � that are not sub-formulas of any other

existential sub-formula of � (i.e., they are the top-level existential sub-formulas

of �). Checking whether a state s satis�es a state formula � can be done by

checking whether s satis�es each sub-formula in Eform(�) separately, and then

combining the results.

For each �

0

2 Eform(�), we can determine whether s satis�es �

0

in the

structure K Stru(G;Q) by unwinding GQS(H;H), with respect to the predi-

cates in pred(�

0

) only, to obtain the Kripke structure GQS Stru(H;H; pred(�

0

))

and by checking if the corresponding node satis�es �

0

in this structure. Formu-

las in Eform(�) that have the same set of atomic propositions can be grouped

and their satisfaction can be checked at the same time using the same unwind-

ing. Obviously, unwinding with respect to smaller sets of predicates can yield

dramatic performance improvements.

Correlations between predicates can also be used to limit the number of

unwindings necessary for model checking. Two predicates Q

i

and Q

j

in Q are

correlated if, for all f 2 H, f(Q

i

) = Q

i

i� f(Q

j

) = Q

j

. It is easy to see that the

relation \correlated" is an equivalence relation. We say that two atomic proposi-

tions are correlated if their corresponding predicates are correlated. Correlations

between predicates can sometimes be detected very easily. For instance, with the

framework of [4, 5] where automorphisms induced by process permutations are

considered, two predicates referring to variables of a same process are correlated:

the predicates x[1] = 5 and y[1] = 10 are correlated if x[1] and y[1] refer to the

local variables x and y of process 1, respectively.

If two predicates Q

i

and Q

j

are correlated, the following property can be

proven: if C is a subset of Q containing Q

i

and C

0

= C [fQ

j

g, then the Kripke

structures obtained by unwinding with respect to either C or C

0

will be iso-

morphic. The above property allows us to combine unwindings corresponding to

di�erent formulas in Eform(�) whose atomic propositions are correlated. First,

we de�ne an equivalence relation among formulas in Eform(�): two formulas x

and y in Eform(�) are equivalent if every atomic proposition in x is correlated to

some atomic proposition in y, and vice versa. This equivalence relation partitions

Eform(�) into disjoint groupsG

1

; :::; G

w

. Let pred(G

i

) = f[pred(�

0

) : �

0

2 G

i

g.

Now for each group G

i

, we can unwind GQS(H;H) with respect to pred(G

i

)

and check whether each formula in G

i

is satis�ed at rep(s;H).

The number of unwindings can be further reduced by ordering the groups

G

1

; :::; G

w

as follows. We say that G

i

is above G

j

if every predicate in pred(G

j

)

is correlated to some predicate in pred(G

i

). The relation \above" is a partial

order. We call G

i

a top-group if there is no group above it. Observe that, if G

i

is

above G

j

, we can combine their unwindings. Hence, if H

1

; ::; H

v

denote the top-

groups de�ned by the groups G

1

; :::; G

w

(v � w), we can unwind GQS(H;H)

with respect to the predicates in pred(H

i

) for each group H

i

separately, and

check the satisfaction in state s of each formula in H

i

and in all the groups G

i

\below" it using this unwinding.

Note that using the formula decomposition technique can sometimes be less

e�cient than the direct approach of the previous section. This can be the case

when there is a lot of overlap between the sets pred(H

i

) of predicates corre-

sponding to the groups H

i

obtained after partitioning Eform(�).

4.2 Sub-formula Tracking

A CTL

�

formula sometimes exhibits itself some internal symmetry. Exploiting

formula symmetry was already proposed in [4]. Here, we generalize these ideas

by presenting a uni�ed unwinding process where decomposition and symmetry

in a formula can be both exploited simultaneously.

Let � be a CTL

�

formula. Consider two state sub-formulas �

0

and �

00

of �. We

say that �

0

dominates �

00

in � if �

00

is a sub-formula of �

0

and every occurrence

of �

00

in � is inside an occurrence of �

0

. We say that �

0

and �

00

are independent

in � if neither of them dominates the other in �. Thus, formulas that are not

sub-formulas of each other are independent. Note that even if a formula is a

sub-formula of another formula, it is possible for them to be independent: for

instance, in the formula q given by E(EGq

1

UE(q

1

Uq

2

)), the state sub-formulas q

1

and E(q

1

Uq

2

) are independent since there is an occurrence of q

1

which does not

appear in the context of E(q

1

Uq

2

). Let Sform(�) be the set of all sub-formulas

of � that are state formulas. Let R be a subset of Sform(�). We say that R

is a maximal independent set if it is a maximal subset of Sform(�) such that

the state formulas in R are all pairwise independent. There can be many such

maximal independent subsets of Sform(�). For instance, the set of all atomic

propositions appearing in � is obviously a maximal independent set. For the

formula q given above, the set consisting of EGq

1

and E(q

1

Uq

2

) is a maximal

independent set.

In what follows, we are interested in exploiting \good" maximal independent

sets, i.e., sets R whose elements are symmetric or partially symmetric. A for-

mula q is symmetric if, for every automorphism f in G, f(q) = q; it is partially

symmetric when this property holds for almost all f in G. In general, detecting

whether a sub-formula is symmetric is computationally hard. However, when

syntactically symmetric constructs (similar to those in ICTL

�

[5]) are used, it

is then easy to determine whether a sub-formula is symmetric. For instance,

when only process permutations are used as automorphisms (as in [4, 5]), the

sub-formula ^

i2I

h(i) is symmetric when I is the set of all process indices and

h(i) is a formula that only refers to the local variables of process i; the same

sub-formula is partially symmetric when I contains most process indices.

Let R = fR

1

; :::; R

m

g be a (preferably good) maximal independent set of

sub-formulas of �. We also view each element R

i

of R as a predicate, i.e., as the

set of states that satisfy the CTL

�

formula R

i

. Consider the Kripke structure

GQS Stru(H;H;R) obtained by unwinding GQS(H;H) with respect to R. In

a similar way, we can de�ne Greduced Stru(H;H;R) following the procedure of

Section 3.

Let denote the formula obtained from � by replacing every occurrence of

the sub-formula R

i

by a fresh atomic proposition r

i

, for all i = 1; :::;m. The

following theorem relates the satisfaction of � and .

Theorem 3. Let s be a state in S and f be an automorphism in H such that

s = f(rep(s;H)). Then, the formula � is satis�ed at state s in the structure

K Stru(G;Q) i� is satis�ed at the node u = (rep(s;H); f

�1

(R

1

); :::; f

�1

(R

m

);

f

�1

(�

1

); :::; f

�1

(�

r

)) in the structure GQS Stru(H;H;R) i� is satis�ed at

node u in the structure Greduced Stru(H;H;R).

Thus, the previous theorem makes it possible to check a formula � \hierarchi-

cally", by recursively checking sub-formulas R

i

and then combining the results

via the unwinding of GQS(H;H) with respect to R only.

We now discuss the construction of the structures GQS Stru(H;H;R) and

Greduced Stru(H;H;R). The states of both of these structures are of the form

(�s;X

1

; :::; X

m

; �

1

; :::; �

r

), where each X

i

is a CTL

�

state formula obtained by

applying some automorphism to R

i

during the unwinding process. Remember

that, during the construction process, we need to be able to check whether a

newly generated node v = (

�

t; Y

1

; :::; Y

m

; �

1

; :::; �

r

) is the same as some previ-

ously generated node u = (�s;X

1

; :::; X

m

; �

1

; :::; �

r

), i.e., whether �s =

�

t, Y

i

= X

i

for all i = 1; :::;m, and �

j

= �

j

for all j = 1; :::; r. Checking whether �s =

�

t

and �

j

= �

j

for all j = 1; :::; r can usually be done e�ciently as previously

discussed. However, checking whether Y

i

= X

i

can be hard since each of these

can now be any CTL

�

state formulas, and checking equivalence of such formu-

las is computationally hard in general. Note that, if the CTL

�

formula � uses

syntactically symmetric constructs such as those in ICTL

�

[4], then this check

can always be done e�ciently.

Another important aspect in the construction of GQS Stru(H;H;R) is the

generation of N(�s) for each state �s. For a node u = (�s;X

1

; :::; X

m

; �

1

; :::; �

r

),

r

i

2 N(u) i� �s 2 X

i

. Since X

i

can now be any CTL

�

state formula, this means

that �s 2 X

i

i� �s satis�es the formula X

i

in the Kripke structure K Stru(G;Q).

Since X

i

is obtained by applying a sequence of automorphisms in H to the state

sub-formula R

i

of �, we know that X

i

= f(R

i

) for some f 2 H. This automor-

phism f can be made available at the time of generation of u by maintaining

automorphisms with states in the set To explore used in the algorithm for gener-

atingGreduced Stru(H;H;Q) given in Section 3. Thus, checking whether �s 2 X

i

reduces to checking whether �s satis�es the sub-formula f(R

i

) in K Stru(G;Q),

which itself holds i� f

�1

(�s) satis�es R

i

in K Stru(G;Q). The latter can be

checked by recursively applying the above procedure to R

i

instead of �.

We thus obtain a complete recursive procedure which constructs di�erent

structures corresponding to the di�erent sub-formulas R

i

of �. Note that the

formula decomposition technique of Section 4.1 can be used to decompose sub-

formulas R

i

. Thus, formula decomposition and sub-formula tracking are comple-

mentary and can be both applied recursively. It is to be noted that if no good

maximal independent set R can be found then the procedure of Subsection 4.1

should be applied directly.

Example

We illustrate the method by a brief example. Assume that we are using auto-

morphisms induced by process permutations, as in [4, 5]. Consider a concurrent

system of n processes. Consider the problem of model-checking with respect to

the formula � given by E(q

1

U ^

i2I

Eh(i)) where h(i) is a path formula with no

further path quanti�ers and it only refers to the local propositions of process i, I

is the set of all process indices excepting process 1, q

1

is the local proposition of

process 1. Let �

0

denote the sub-formula ^

i2I

Eh(i). This is a partially symmet-

ric sub-formula. We take R to be the set fq

1

; �

0

g, since it is a \good" maximal

independent set.

We construct GQS Stru(H;H;R). Let M be the total number of nodes

in GQS(H;H). M can be exponentially smaller than the number of nodes in

the full reachability graph, i.e., the number of nodes in K Stru(G;Q). It is not

di�cult to show that the number of nodes inGQS Stru(H;H;R) is at most nM .

During the construction of GQS Stru(H;H;R), we need to determine which of

its nodes satisfy the sub-formula �

0

. To determine this, we invoke the procedure of

subsection 4.1 only once. During this procedure, for each i 2 I , we determine the

nodes that satisfy the sub-formula Eh(i). This is done by unwindingGQS(H;H).

The resulting structure is also of size at most nM . Thus the over all complexity

of this procedure is O(n

2

M).

However, if we use the direct approach and unwind GQS(H;H) (or if we

use QS Stru(G;G; pred(�))) then we will get the full reachability graph. Thus

we see that the above example is a case for which the method of this section

is exponentially better than the direct approach; (an example program is the

resource controller with n identical user processes). On other hand, one can give

examples where the direct method is better than the method of this section. As

observed, this occurs for cases when the formula has no symmetric (or partially

symmetric) sub-formulas. It is to be noted that the formula �, given above, is

not an ICTL

�

formula and hence the methods of [4, 5] can't be applied.

5 Experimental Results

In this section, we report some preliminary experimental results evaluating the

techniques proposed in this paper. Experiments were performed in conjunction

with the SMC tool [14]. A �rst example is the simple resource allocation system

described at the beginning of Section 3. We considered a variant of the system

with priorities where user 1 is given higher priority than all other users. We

checked the following property for various values of i: is it possible to reach a

global state where one of the �rst i users is holding the resource and the resource

is still available?

We used two approaches to check the above property. Both approaches give

correct answer. The �rst approach employs the structure QS Stru(G;G;Q); here

G is the set of automorphisms induced by process permutations that �x each

of the �rst i processes and arbitrarily permute the other user processes. The

second approach uses formula decomposition of Section 4.1. The decomposed

sub-formulas are checked by unwinding GQS(H;H) with respect to the atomic

Value of i First Approach Second approach,i.e., using

i.e., employing QS Stru formula decomposition

2 14/2676 14/1863

3 19/3260 16/1864

4 39/4270 18/1865

5 130/6505 20/1866

6 575/11404 22/1867

Table 1. Comparison of the two approaches.

predicates of the sub-formulas independently; here H is the of automorphisms,

induced by process permuations, that arbitrarily permute all the user processes.

Formula decomposition was performed manually and SMC was used to check

the sub-cases.

Table 1 compares the run-time and memory usage of the two approaches, for

the resource allocation system described above with a total number of 80 user

processes. Each entry in the table has the form x=y where x is the run-time in

seconds and y is the memory usage in Kbytes. Clearly, the second approach,

i.e. the approach with formula decomposition, performs better than the �rst

approach; the di�erence in their performances becomes more pronounced for

larger values of i.

We also performed experiments using the Fire-wire protocol (with admin-

istrator module) considered in [14], using a con�guration with three stations.

We checked whether it is possible for either stations 1 or 2 not to receive an

acknowledgment after a message is sent. Again, we compared the above two ap-

proaches. The �rst approach took 80 seconds and used 24 Mbytes of memory

to complete the veri�cation, while the second approach (i.e. the direct approach

with formula decomposition) took 58 seconds and used 12.8 Mbytes of memory.

6 Conclusion and Related Work

We have presented new algorithmic techniques for exploiting symmetry in model

checking. We have generalized symmetry reduction to a larger class of automor-

phisms, so that systems with little or no symmetry can be veri�ed more e�ciently

using symmetry reduction. We also presented novel techniques based on formula

decomposition and sub-formula tracking. Preliminary experimental results are

encouraging. Full implementation, and further evaluation with respect to real

world examples, needs to be carried out as part of future work.

As mentioned earlier, symmetry reduction in model checking has been exten-

sively studied in [10, 2, 4, 5, 8, 12, 13, 6, 7]. The problem of verifying properties of

systems with little or no symmetry was �rst considered in [6, 7]. The work pre-

sented in [7] considered also considers general automorphisms. There, only the

veri�cation of symmetric properties was discussed. In contrast, our algorithms

can be used to verify any property speci�ed in CTL

�

, even if the property

is not symmetric. [5] presents a veri�cation method for ICTL

�

formulas. Our

sub-formula tracking technique can also be used to e�ciently verify properties

speci�ed in ICTL

�

, in addition to being applicable to any CTL

�

formula. For-

mula symmetry was explicitly considered in [4] where quotient structures are

constructed with respect to automorphisms representing symmetries of the pro-

gram as well as of the formula. Our sub-formula tracking technique indirectly

uses formula symmetry dynamically as the GQS is unwound.

References

1. Aggarwal S., Kurshan R. P., Sabnani K. K.: A Calculus for Protocol Speci�cation

and Validation. in Protocol Speci�cation, Testing and Veri�cation III, H. Ruden,

C. West (ed's), pp19{34, North-Holland, 1983.

2. Clarke, E. M., Filkorn, T., Jha, S.: Exploiting Symmetry in Temporal Logic Model

Checking. CAV93, LNCS 697 Springer-Verlag, 1993.

3. Emerson, E. A.: Temporal and modal logic. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science. Elsevier/MIT Press, Amsterdam/Cambridge, 1990.

4. Emerson, E. A., Sistla, A. P.: Symmetry and Model Checking. CAV93, LNCS 697

Springer-Verlag, 1993; journal version appeared in Formal Methods in System De-

sign, 9(1/2),1996, pp 105-130.

5. Emerson, E. A., Sistla, A. P.: Utilizing Symmetry when Model Checking under Fair-

ness Assumptions: An Automata-theoretic Approach. CAV95, LNCS 939 Springer-

Verlag, 1995.

6. Emerson E. A., Tre�er R., From Symmetry to Asymmetry: New techniques for

Symmetry Reduction in Model-checking, Proc. of CHARME 1999.

7. Emerson E. A., Havlicek J. W., Virtual Symmetry Reductions, Proc. of LICS 2000.

8. Gyuris, V., Sistla, A. P.: On-the-Fly Model Checking under Fairness that Exploits

Symmetry. CAV97, LNCS 1254 Springer-Verlag, 1997; To appear in Formal Meth-

ods in System Design.

9. Godefroid, P.: Exploiting Symmetry when Model-Checking Software, Proceedings

of FORTE/PSTV'99, Beijing, 1999.

10. Ip, C. N., Dill, D. L.: Better Veri�cation through Symmetry. Formal Methods in

System Design 9 1/2, pp41{75, 1996.

11. Jensen, K.: Colored Petri Nets: Basic Concepts, Analysis Methods, and Practical

Use, Vol2. Analysis Methods, EATCS Monographs, Springer-Verlag, 1994.

12. Jha, S.: Symmetry and Induction in Model Checking, Ph. D. Thesis, Computer

Science Department, Carnegie-Mellon University, 1996.

13. Kurshan, R. P.: Computer Aided Veri�cation of Coordinated Processes: The Au-

tomata Theoretic Approach, Princeton University Press, Princeton NJ, 1994.

14. Sistla A. P., Gyuris V., Emerson E. A., SMC: A Symmetry based Model Checker

for Veri�cation of Safety and Liveness Properties, ACM Transactions on Software

Engineering Methodologies, Vol 9, No 2, pp 133-166, April 2000.

