
Learn&Fuzz:
Machine Learning for Input Fuzzing

Patrice Godefroid
Microsoft Research, USA

pg@microsoft.com

Hila Peleg
Technion, Israel

hilap@cs.technion.ac.il

Rishabh Singh
Microsoft Research, USA

risin@microsoft.com

Abstract—Fuzzing consists of repeatedly testing an application
with modified, or fuzzed, inputs with the goal of finding security
vulnerabilities in input-parsing code. In this paper, we show
how to automate the generation of an input grammar suitable
for input fuzzing using sample inputs and neural-network-based
statistical machine-learning techniques. We present a detailed
case study with a complex input format, namely PDF, and a
large complex security-critical parser for this format, namely,
the PDF parser embedded in Microsoft’s new Edge browser. We
discuss and measure the tension between conflicting learning and
fuzzing goals: learning wants to capture the structure of well-
formed inputs, while fuzzing wants to break that structure in
order to cover unexpected code paths and find bugs. We also
present a new algorithm for this learn&fuzz challenge which
uses a learnt input probability distribution to intelligently guide
where to fuzz inputs.

Index Terms—fuzzing, deep learning, grammar-based fuzzing,
grammar learning

I. INTRODUCTION

Fuzzing is the process of finding security vulnerabilities in
input-parsing code by repeatedly testing the parser with mod-
ified, or fuzzed, inputs. There are three main types of fuzzing
techniques in use today: (1) blackbox random fuzzing [30],
(2) whitebox constraint-based fuzzing [11], and (3) grammar-
based fuzzing [26], [30], which can be viewed as a variant
of model-based testing [31]. Blackbox and whitebox fuzzing
are fully automatic, and have historically proved to be very
effective at finding security vulnerabilities in binary-format
file parsers. In contrast, grammar-based fuzzing is not fully
automatic: it requires an input grammar specifying the input
format of the application under test. This grammar is typically
written by hand, and this process is laborious, time consuming,
and error-prone. Nevertheless, grammar-based fuzzing is the
most effective fuzzing technique known today for fuzzing
applications with complex structured input formats, like web-
browsers which must take as (untrusted) inputs web-pages
including complex HTML documents and JavaScript code.

In this paper, we consider the problem of automatically
generating input grammars for grammar-based fuzzing by
using machine-learning techniques and sample inputs. Previ-
ous attempts have used variants of traditional automata and
context-free-grammar learning algorithms (see Section VII). In
contrast with prior work, this paper presents the first attempt at
using neural-network-based statistical learning techniques for
this problem. Specifically, we use recurrent neural networks

for learning a statistical input model that is also generative: it
can be used to generate new inputs based on the probability
distribution of the learnt model (see Section III for an intro-
duction to these learning techniques). We use unsupervised
learning, and our approach is fully automatic and does not
require any format-specific customization.

We present an in-depth case study for a very complex
input format: PDF. This format is so complex (see Section II)
that it is described in a 1,300-pages (PDF) document [1].
We consider a large, complex and security-critical parser for
this format: the PDF parser embedded in Microsoft’s new
Edge browser. Through a series of detailed experiments (see
Section IV), we discuss the learn&fuzz challenge: how to
learn and then generate diverse well-formed inputs in order to
maximize parser-code coverage, while still injecting enough
ill-formed input parts in order to exercise unexpected code
paths and error-handling code.

We also present a novel learn&fuzz algorithm (in Sec-
tion III) which uses a learnt input probability distribution to
intelligently guide where to fuzz (statistically well-formed)
inputs. We show that this new algorithm can outperform the
other learning-based and random fuzzing algorithms consid-
ered in this work.

This paper makes the following technical contributions:

• We present the first attempt at using neural-network-based
learning techniques for generating automatically an input
grammar suitable for fuzzing purposes.

• We point out and measure for the first time the funda-
mental tension between conflicting learning and fuzzing
goals. A practical consequence of this key observation is
that better learning does not imply better fuzzing.

• We present the first combined learn&fuzz algorithm
which leverages a learnt input probability distribution in
order to intelligently guide where to fuzz well-formed
inputs.

The paper is organized as follows. Section II presents an
overview of the PDF format, and the specific scope of this
work. Section III gives a brief introduction to neural-network-
based learning, and discusses how to use and adapt such tech-
niques for the learn&fuzz problem. Section IV presents results
of several learning and fuzzing experiments with the Edge PDF
parser. Related work is discussed in Section VII. We conclude
and discuss directions for future work in Section VIII.

2 0 o b j
<<
/ Type / Pages
/ Kids [3 0 R]
/ Count 1
>>
en do b j

x r e f
0 6
0000000000 65535 f
0000000010 00000 n
0000000059 00000 n
0000000118 00000 n
0000000296 00000 n
0000000377 00000 n
0000000395 00000 n

t r a i l e r
<<
/ S i z e 18
/ I n f o 17 0 R
/ Root 1 0 R
>>
s t a r t x r e f
3661

(a) (b) (c)
Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a cross-reference table with one subsection, and (c) is a trailer.

II. THE STRUCTURE OF PDF DOCUMENTS

The full specification of the PDF format is over 1, 300 pages
long [1]. Most of this specification – roughly 70% – deals with
the description of data objects and their relationships between
parts of a PDF document.

PDF files are encoded in a textual format, which may
contain binary information streams (e.g., images, encrypted
data). A PDF document is a sequence of at least one PDF
body. A PDF body is composed of three sections: objects,
cross-reference table, and trailer.

Objects. The data and metadata in a PDF document is
organized in basic units called objects. Objects are all similarly
formatted, as seen in Figure 1(a), and have a joint outer
structure. The first line of the object is its identifier, for indirect
references, its generation number, which is incremented if the
object is overridden with a newer version, and “obj” which
indicates the start of an object. The “endobj” indicator closes
the object.

The object in Figure 1(a) contains a dictionary structure,
which is delimited by “<<” and “>>”, and contains keys that
begin with / followed by their values. [3 0 R] is a cross-
object reference to an object in the same document with the
identifier 3 and the generation number 0. Since a document can
be very large, a referenced object is accessed using random-
access via a cross-reference table.

Other examples of objects are shown in Figure 2. The object
in Figure 2(a) has the content [680.6 680.6], which is an
array object. Its purpose is to hold coordinates referenced
by another object. Figure 2(b) is a string literal that holds
the bookmark text for a PDF document section. Figure 2(c)
is a numeric object. Figure 2(d) is an object containing a
multi-type array. These are all examples of object types that
are both used on their own and as the basic blocks from
which other objects are composed (e.g., the dictionary object
in Figure 1(a) contains an array). The rules for defining and
composing objects comprises the majority of the PDF-format
specification.

Cross reference table. The cross reference tables of a PDF
body contain the address in bytes of referenced objects within
the document. Figure 1(b) shows a cross-reference table with
a subsection that contains the addresses for five objects with
identifiers 1-5 and the placeholder for identifier 0 which never
refers to an object. The object being pointed to is determined

by the row of the table (the subsection will include 6 objects
starting with identifier 0) where n is an indicator for an object
in use, where the first column is the address of the object in
the file, and f is an object not used, where the first column
refers to the identifier of the previous free object, or in the
case of object 0 to object 65535, the last available object ID,
closing the circle.

Trailer. The trailer of a PDF body contains a dictionary
(again contained within “<<” and “>>”) of information about
the body, and startxref which is the address of the cross-
reference table. This allows the body to be parsed from the
end, reading startxref, then skipping back to the cross-
reference table and parsing it, and only parsing objects as they
are needed.

Updating a document. PDF documents can be updated
incrementally. This means that if a PDF writer wishes to
update the data in object 12, it will start a new PDF body,
write the new object with identifier 12 in it, and a generation
number greater than the one that appeared before. It will then
write a new cross-reference table pointing to the new object,
and append this body to the previous document. Similarly, an
object will be deleted by creating a new cross-reference table
and marking it as free. We use this method in order to append
new objects in a PDF file, as discussed later in Section IV.

Scope of this work. In this paper, we investigate how to
leverage and adapt neural-network-based learning techniques
to learn a grammar for non-binary PDF data objects. Such
data objects are formatted text, such as shown in Figure 1(a)
and Figure 2. Rules for defining and composing such data
objects makes the bulk of the 1,300-pages PDF-format spec-
ification. These rules are numerous and tedious, but repet-
itive and structured, and therefore well-suited for learning
with neural networks (as we will show later). In contrast,
learning automatically the structure (rules) for defining cross-
reference tables and trailers, which involve constraints on lists,
addresses, pointers and counters, are too complex and less
promising for learning with neural networks. We also do not
consider binary data objects, which are encoded in binary (e.g.,
image) sub-formats and for which fully-automatic blackbox
and whitebox fuzzing are already effective.

125 0 o b j
[6 8 0 . 6 6 8 0 . 6]
en do b j

88 0 o b j
(R e l a t e d Work)
en do b j

75 0 o b j
4171
en do b j

(a) (b) (c)

47 1 o b j
[f a l s e 170 8 5 . 5 (H e l l o) /My#20Name]
en do b j

(d)
Fig. 2. PDF data objects of different types.

III. STATISTICAL LEARNING OF OBJECT CONTENTS

We now describe our statistical learning approach for learn-
ing a generative model of PDF objects from a large corpus
of PDF objects. We consider PDF objects as a sequence of
characters and use a Recurrent neural network based character-
level language model (char-rnn) [22], [12] to learn a
generative model of sequences (PDF objects). The char-rnn
language models have been shown to produce impressive
results for many tasks such as speech recognition [22], [13]
and handwriting recognition [12]. The char-rnn model allows
for learning variable length contexts to predict next sequence
of characters as compared to traditional n-gram based ap-
proaches that are limited by contexts of finite length. Given
a corpus of PDF objects, the char-rnn model can be trained
to learn a generative model using a set of training input
and output sequences. The input sequences correspond to
sequences of characters in PDF objects and the corresponding
output sequences are obtained by shifting the input sequences
by one position. The learnt model can then be used to generate
new sequences (PDF objects) by sampling the distribution
given a starting prefix (such as “obj”).

A. Char-RNN Language Model

A recurrent neural network (RNN) is a neural network that
operates on a variable length input sequence 〈x1, x2, · · · , xT 〉
and consists of a hidden state h and an output y. The RNN
processes the input sequence in a series of time stamps (one
for each element in the sequence). For a given time stamp t,
the hidden state ht at that time stamp and the output yt is
computed as:

ht = f(ht−1, xt)

yt = φ(ht)

where f is a non-linear activation function such as sigmoid,
tanh etc. and φ is a function such as softmax that computes
the output probability distribution over a given vocabulary con-
ditioned on the current hidden state. RNNs can learn a proba-
bility distribution over a character sequence 〈x1, · · · , xt−1〉 by
training to predict the next character xt in the sequence, i.e.,
it can learn the conditional distribution p(xt|〈x1, · · · , xt−1〉).

The RNNs can be extended to generate a sequence
of outputs 〈y1, · · · , yT1〉 given an input sequence
〈x1, · · · , xt−1〉 [12]. The key idea of such a generative
model over character sequences is to use the output prediction

yt for a time step t as the input character xt+1 for the time
step t + 1. An illustration of the char-rnn architecture is
shown in Figure. 3. This architecture allows us to learn a
conditional distribution over a sequence of next outputs, i.e.,
p(〈y1, · · · , yT1〉|〈x1, · · · , xT2〉).

We train the char-rnn language model using a corpus of PDF
objects treating each one of them as a sequence of characters.
During training, we first concatenate all the object files si

into a single file resulting in a large sequence of characters
s̃ = s1 + · · · + sn. We then split the sequence into multiple
training sequences of a fixed size d (set to d = 100 for our
experiments), such that the ith training instance ti = s̃[i ∗
d : (i + 1) ∗ d], where s[k : l] denotes the subsequence of s
between indices k and l. The output sequence for each training
sequence is the input sequence shifted by 1 position, i.e., ot =
s̃[i ∗ d + 1 : (i + 1) ∗ d + 1]. The char-rnn model is then
trained end-to-end to learn a generative model over the set of
all training instances.

B. Generating New PDF Objects

We use the learnt char-rnn model to generate new PDF
objects. There are many different strategies for object gen-
eration depending upon the sampling strategy used to sample
the learnt distribution. We always start with a prefix of the
sequence “obj ” (denoting the start of an object instance),
and then query the model to generate a sequence of output
characters until it produces “endobj” corresponding to the
end of the object instance. We now describe three different
sampling strategies we employ for generating new object
instances.
NoSample. In this generation strategy, we use the learnt

distribution to greedily predict the best character given a prefix.
This strategy results in generating PDF objects that are most
likely to be well-formed and consistent, but it also limits
the number of objects that can be generated. Given a prefix
like “obj”, the best sequence of next characters is uniquely
determined and therefore this strategy results in the same
PDF object. This limitation precludes this strategy from being
useful for fuzzing.
Sample. In this generation strategy, we use the learnt

distribution to sample next characters (instead of selecting
the top predicted character) in the sequence given a prefix
sequence. This sampling strategy is able to generate a diverse
set of new PDF objects by combining various patterns the

o b j < < / T y

< / T y p

Input Sequence Output Sequence

…

Fig. 3. A char-RNN model to generate PDF objects.

model has learnt from the diverse set of objects in the training
corpus. Because of sampling, the generated PDF objects are
not always guaranteed to be well-formed, which is useful from
the fuzzing perspective.
SampleSpace. This sampling strategy is a combination of

Sample and NoSample strategies. It samples the distribution
to generate the next character only when the current prefix
sequence ends with a whitespace, whereas it uses the best
character from the distribution in middle of tokens (i.e.,
prefixes ending with non-whitespace characters), similar to
the NoSample strategy. This strategy is expected to generate
more well-formed PDF objects compared to the Sample
strategy as the sampling is restricted to only at the end of
whitespace characters.

C. SAMPLEFUZZ: Sampling with Fuzzing

Our goal of learning a generative model of PDF objects is
ultimately to perform fuzzing. A perfect learning technique
would always generate well-formed objects that would not
exercise any error-handling code, whereas a bad learning tech-
nique would result in ill-formed objects that would be quickly
rejected by the parser upfront. To explore this tradeoff, we
present a new algorithm, dubbed SampleFuzz, to perform
some fuzzing while sampling new objects. We use the learnt
model to generate new PDF object instances, but at the same
time introduce anomalies to exercise error-handling code.

The SampleFuzz algorithm is shown in Algorithm 1. It
takes as input the learnt distribution D(x, θ), the probability of
fuzzing a character tfuzz, and a threshold probability pt that
is used to decide whether to modify the predicted character.
The model D(x, θ) returns a probability distribution over the
vocabulary of characters that represents the likelihood of the
next character following the given input character sequence x
(where the model only considers the last d characters in the
input sequence if len(x) > d). While generating the output
sequence seq, the algorithm samples the learnt model to get
some next character c and its probability p(c) at a particular
timestamp t. If the probability p(c) is higher than the user-
provided threshold pt, i.e., if the model is confident that c
is likely the next character in the sequence, the algorithm
chooses to instead sample another different character c′ in its
place where c′ has the minimum probability p(c′) in the learnt

Algorithm 1 SampleFuzz(D(x, θ), tfuzz, pt)
seq := “obj ”
while ¬ seq.endswith(“endobj”) do

c,p(c) := sample(D(seq,θ)) (* Sample c from the learnt
distribution *)
pfuzz := random(0, 1) (* random variable to decide
whether to fuzz *)
if pfuzz > tfuzz ∧ p(c) > pt then

c := argminc′{p(c′) ∼ D(seq, θ)} (* replace c by c’
(with lowest likelihood) *)

end if
seq := seq + c
if len(seq) > MAXLEN then
seq := “obj ” (* Reset the sequence *)

end if
end while
return seq

distribution. This modification (fuzzing) takes place only if
the result pfuzz of a random coin toss returns a probability
higher than input parameter tfuzz, which lets the user further
control the probability of fuzzing characters. The key intuition
of the SampleFuzz algorithm is to introduce unexpected
characters in objects only in places where the model is highly
confident, in order to trick the PDF parser. The algorithm also
ensures that the object length is bounded by MAXLEN. Note
that the algorithm is not guaranteed to always terminate, but
we observe that it always terminates in practice.

D. Training the Model

For evaluating the performance of the char-rnn model, we
train multiple models parameterized by number of passes,
called epochs, that the learning algorithm performs over the
training dataset. An epoch is thus defined as an iteration of the
learning algorithm to go over the complete training dataset. We
evaluate the char-rnn models trained for five different numbers
of epochs: 10, 20, 30, 40, and 50. In our setting, one epoch
takes about 12 minutes to train the model, and the model with
50 epochs takes about 10 hours to learn. We use an LSTM
model [16] (a variant of RNN) with 2 hidden layers, where
each layer consists of 128 hidden states.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

In this section, we present results of various fuzzing experi-
ments with the PDF viewer included in Microsoft’s new Edge
browser. We used a self-contained single-process test-driver
executable provided to us by Microsoft Windows organization.
This executable takes a PDF file as input argument, executes
the PDF parser included in the Microsoft Edge browser, and
then stops. If the executable detects any parsing error due to
the PDF input file being malformed, it prints an error message
in an execution log. In what follows, we simply refer to it as
the Edge PDF parser. All experiments were performed on
4-core 64-bit Windows 10 VMs with 20GB of RAM.

We use three main standard metrics to measure fuzzing
effectiveness:

Coverage. For each test execution, we measure instruction
coverage, that is, the set of all unique instructions executed
during that test. Each instruction is uniquely identified by a
pair of values dll-name and dll-offset. The coverage
for a set of tests is simply the union of the coverage sets of
each individual test.

Pass rate. For each test execution, we programmatically
check (grep) for the presence of parsing-error messages in
the PDF-parser execution log. If there are no error messages,
we call this test pass otherwise we call it fail. Pass tests
corresponds to PDF files that are considered to be well-formed
by the Edge PDF parser. This metric is less important for
fuzzing purposes, but it will help us estimate the quality of
the learning.

Bugs. Each test execution is performed under the monitor-
ing of the tool AppVerifier, a free runtime monitoring tool that
can catch memory corruptions bugs (such as buffer overflows)
with a low runtime overhead (typically a few percent runtime
overhead) and that is widely used for fuzzing on Windows.

B. Training Data

We extracted about 63,000 non-binary PDF objects out of
a diverse set of 534 (well-formed) PDF files. These 534 files
themselves were provided to us by the Windows fuzzing team
and had been used for prior extended fuzzing of the Edge
PDF parser. This set of 534 files was itself the result of seed
minimization, that is, the process of computing a subset of a
larger set of input files which provides the same instruction
coverage as the larger set. Seed minimization is a standard
first step applied before file fuzzing [30], [11]. The larger set
of PDF files came from various sources, like past PDF files
used for fuzzing but also other PDF files collected from the
web.

These 63,000 non-binary objects are the training set for the
RNNs we used in this work. Binary objects embedded in PDF
files (typically representing images in various image formats)
were not considered in this work.

We learn, generate, and fuzz PDF objects, but the Edge PDF
parser processes full PDF files, not single objects. Therefore
we wrote a simple program to correctly append a new PDF

Fig. 4. Coverage for PDF hosts and baselines.

object to an existing (well-formed) PDF file, which we call
a host, following the procedure discussed in Section II for
updating a PDF document. Specifically, this program first
identifies the last trailer in the PDF host file. This provides
information about the file, such as addresses of objects and
the cross-reference table, and the last used object ID. Next,
a new body section is added to the file. In it, the new object
is included with an object ID that overrides the last object in
the host file. A new cross reference table is appended, which
increases the generation number of the overridden object.
Finally, a new trailer is appended.

C. Baseline Coverage

To allow for a meaningful interpretation of coverage results,
we randomly selected 1,000 PDF objects out of our 63,000
training objects, and we measured their coverage of the Edge
PDF parser, to be used as a baseline for later experiments.

A first question is which host PDF file should we use in
our experiments: since any PDF file will have some objects
in it, will a new appended object interfere with other objects
already present in the host, and hence influence the overall
coverage and pass rate?

To study this question, we selected the smallest three PDF
files in our set of 534 files, and used those as hosts. These
three hosts are of size 26Kb, 33Kb and 16Kb respectively.

Figure 4 shows the instruction coverage obtained by running
the Edge PDF parser on the three hosts, denoted host1,
host2, and host3. It also show the coverage obtained by
computing the union of these three sets, denoted host123.
Coverage ranges from 353,327 (host1) to 457,464 (host2)
unique instructions, while the union (host123) is 494,652
and larger than all three – each host covers some unique
instructions not covered by the other two. Note that the
smallest file host3 does not lead to the smallest coverage.

Next, we recombined each of our 1,000 baseline ob-
jects with each of our three hosts, to obtain three sets of
1,000 new PDF files, denoted baseline1, baseline2 and
baseline3, respectively. Figure 4 shows the coverage of

Fig. 5. Pass rate for Sample and SampleSpace from 10 to 50 epochs.

each set, as well as their union baseline123. We observe
the following.

• The baseline coverage varies depending on the host, but
is larger than the host alone (as expected). The largest dif-
ference between a host and a baseline coverage is 59,221
instruction for host123 out of 553,873 instruction for
baseline123. In other words, 90% of all instructions
are included in the host coverage no matter what new
objects are appended.

• Each test typically covers on the order of half a million
unique instructions; this confirms that the Edge PDF
parser is a large and non-trivial application.

• 1,000 PDF files take about 90 minutes to be processed
(both to be tested and get the coverage data).

We also measured the pass rate for each experiment. As
expected, the pass rate is 100% for all 3 hosts.

Main Takeaway: Even though coverage varies across hosts
because objects may interact differently with each host, the re-
combined PDF file is always perceived as well-formed by the
Edge PDF parser.

D. Learning PDF Objects

When training the RNN, an important parameter is the
number of epochs being used (see Section III). We report
here results of experiments obtained after training the RNN
for 10, 20, 30, 40, and 50 epochs, respectively. After training,
we used each learnt RNN model to generate 1,000 unique
PDF objects. We also compared the generated objects with
the 63,000 objects used for training the model, and found no
exact matches.

As explained earlier in Section III, we consider two
main RNN generation modes: the Sample mode where we
sample the distribution at every character position, and the
SampleSpace mode where we sample the distribution only
after whitespaces and generate the top predicted character for
other positions.

The pass rate for Sample and SampleSpace when
training with 10 to 50 epochs is reported in Figure 5. We
observe the following:

• The pass rate for SampleSpace is consistently better
than the one for Sample.

• For 10 epochs only, the pass rate for Sample is already
above 70%. This means that the learning is of good
quality.

• As the number of epochs increases, the pass rate in-
creases, as expected, since the learned models become
more precise but they also take more time (see Sec-
tion III).

• The best pass rate is 97% obtained with SampleSpace
and 50 epochs.

Interestingly, the pass rate is essentially the same regardless of
the host PDF file being used: it varies by at most 0.1% across
hosts (data not shown here).

Main Takeaway: The pass rate ranges between 70% and
97% and shows the learning is of good quality.

E. Coverage with Learned PDF Objects

Figure 6 shows the instruction coverage obtained with
Sample and SampleSpace from 10 to 50 epochs and using
host1 (top left), host2 (top right), host3 (bottom left),
and the overall coverage for all hosts host123 (bottom right).
We observe the following:

• Unlike for the pass rate, the host impacts coverage
significantly, as already pointed out earlier. Moreover, the
shapes of each line vary across hosts.

• The best overall coverage is obtained with Sample 40-
epochs (see the host123 data at the bottom right).

• The best coverage obtained with SampleSpace is also
with 40-epochs.

Main Takeaway: The best overall coverage is obtained with
Sample 40-epochs.

F. Comparing Coverage Sets

So far, we simply counted the number of unique instruc-
tions being covered. We now drill down into the overall
host123 coverage data of Figure 6, and compute the overlap
between overall coverage sets obtained with our 40-epochs
winner Sample-40e and SampleSpace-40e, as well as the
baseline123 and host123 overall coverage. The results
are presented in Figure 7. We observe the following:

• All sets are almost supersets of host123 as expected
(see the host123 row), except for a few hundred
instructions each.

• Sample-40e is almost a superset of all other sets, ex-
cept for 1,680 instructions compared to SampleSpace-
40e, and a few hundreds instructions compared to
baseline123 and host123 (see the Sample-40e
column).

• Sample-40e and SampleSpace-40e have way more
instructions in common than they differ (10,799 and
1,680), with Sample-40e having better coverage than
SampleSpace-40e.

• SampleSpace-40e is incomparable with
baseline123: it has 3,393 more instructions but
also 6,514 missing instructions.

host1 host2

host3 host123

400000

401000

402000

403000

404000

405000

406000

407000

408000

10 20 30 40 50

Sample SampleSpace

500000

505000

510000

515000

520000

525000

10 20 30 40 50

Sample SampleSpace

436000

438000

440000

442000

444000

446000

448000

450000

452000

454000

456000

458000

10 20 30 40 50

Sample SampleSpace

540000

542000

544000

546000

548000

550000

552000

554000

556000

558000

560000

562000

10 20 30 40 50

Sample SampleSpace

Fig. 6. Coverage for Sample and SampleSpace from 10 to 50 epochs, for host 1, 2, 3, and 123.

Row\Column Sample-40e SampleSpace-40e baseline123 host123
Sample-40e 0 10,799 6,658 65,442

SampleSpace-40e 1,680 0 3,393 56,323
baseline123 660 6,514 0 59,444

host123 188 781 223 0
Fig. 7. Comparing coverage: unique instructions in each row compared to each column.

Main Takeaway: Our coverage winner Sample-40e is almost
a superset of all other coverage sets.

G. Combining Learning and Fuzzing

In this section, we consider several ways to combine learn-
ing with fuzzing, and evaluate their effectiveness.

We consider a widely-used simple blackbox random fuzzing
algorithm, denoted Random, which randomly picks a position
in a file and then replaces the byte value by a random value
between 0 and 255. The algorithm uses a fuzz-factor of 100:
the length of the file divided by 100 is the average number of
bytes that are fuzzed in that file.

We use random to generate 10 variants of every PDF
object generated by 40-epochs Sample-40e, SampleSpace-
40e, and baseline. The resulting fuzzed objects are
re-combined with our 3 host files, to obtain three sets
of 30,000 new PDF files, denoted by Sample+Random,
SampleSpace+Random and baseline+Random, respec-
tively.

For comparison purposes, we also include the results of
running Sample-40e to generate 10,000 objects, denoted
Sample-10K.

Finally, we consider our new algorithm SampleFuzz
described in Section III, which decides where to fuzz values

Algorithm Coverage Pass Rate
SampleSpace+Random 563,930 36.97%
baseline+Random 564,195 44.05%

Sample-10K 565,590 78.92%
Sample+Random 566,964 41.81%
SampleFuzz 567,634 68.24%

Fig. 8. Results of fuzzing experiments with 30,000 PDF files each.

based on the learnt distribution. We applied this algorithm
with the learnt distribution of the 40-epochs RNN model,
tfuzz = 0.9, and a threshold pt = 0.9.

Figure 8 reports the overall coverage and the pass-rate for
each set. Each set of 30,000 PDF files takes about 45 hours
to be processed. The rows are sorted by increasing coverage.
We observe the following:

• After applying Random on objects generated with
Sample, SampleSpace and baseline, coverage
goes up while the pass rate goes down: it is consistently
below 50%.

• After analyzing the overlap among coverage sets (data
not shown here), all fuzzed sets are almost supersets of
their original non-fuzzed sets (as expected).

• Coverage for Sample-10K also increases by 6,173 in-
structions compared to Sample, while the pass rate
remains around 80% (as expected).

• Perhaps surprisingly, the best overall coverage is obtained
with SampleFuzz. Its pass rate is 68.24%.

• The difference in absolute coverage between
SampleFuzz and the next best Sample+Random
is only 670 instructions. Moreover, after analyzing the
coverage set overlap, SampleFuzz covers 2,622 more
instructions than Sample+Random, but also misses
1,952 instructions covered by Sample+Random.
Therefore, none of these two top-coverage winners fully
“simulate” the effects of the other.

Main Takeaway: All the learning-based algorithms consid-
ered here are competitive compared to baseline+Random,
and three of those beat that baseline coverage.

H. Bugs

In addition to coverage and pass rate, a third metric of
interest is of course the number of bugs found. During the
experiments previously reported in this section, no bugs were
found. Note that the Edge PDF parser had been thoroughly
fuzzed for months with other fuzzers including SAGE [11])
before we performed this study, and that all the bugs found
during this prior fuzzing had been fixed in the version of the
PDF parser we used for this study.

However, during a longer experiment with
Sample+Random, 100,000 objects and 300,000 PDF
files (which took nearly 5 days), a stack-overflow bug was
found in the Edge PDF parser: a regular-size PDF file is
generated (its size is 33Kb) but it triggers an unexpected
recursion in the parser, which ultimately results in a stack
overflow. This bug was later confirmed and fixed by the
Microsoft Edge development team. We plan to conduct other
longer experiments in the near future.

V. MAIN TAKEAWAY: TENSION BETWEEN COVERAGE AND
PASS RATE

The main takeaway from all our experiments is the tension
we observe between the coverage and the pass rate.

This tension is visible in Figure 8. But it is also visible in
earlier results: if we correlate the coverage results of Figure 6
with the pass-rate results of Figure 5, we can clearly see
that SampleSpace has a better pass rate than Sample, but
Sample has a better overall coverage than SampleSpace
(see host123 in the bottom right of Figure 6).

Intuitively, this tension can be explained as follows. A
pure learning algorithm with a nearly-perfect pass-rate (like
SampleSpace) generates almost only well-formed objects
and exercises little error-handling code. In contrast, a noisier
learning algorithm (like Sample) with a lower pass-rate
can not only generate many well-formed objects, but it also
generates some ill-formed ones which exercise error-handling
code.

Applying a random fuzzing algorithm (like random) to
previously-generated (nearly) well-formed objects has an even

more dramatic effect on lowering the pass rate (see Figure 8)
while increasing coverage, again due to increased coverage of
error-handling code.

The new SampleFuzz algorithm seems to hit a sweet spot
between both pass rate and coverage. In our experiments, the
sweet spot for the pass rate seems to be around 65% − 70%:
this pass rate is high enough to generate diverse well-formed
objects that cover a lot of code in the PDF parser, yet low
enough to also exercise error-handling code in many parts of
that parser.

Note that instruction coverage is ultimately a better indicator
of fuzzing effectiveness than the pass rate, which is instead a
learning-quality metric.

VI. DISCUSSION OF RESULTS AND THREATS TO VALIDITY

Our in-depth study only considers one complex benchmark,
namely PDF and its non-binary objects, and one parser, namely
the Edge PDF parser. For other input formats, other training
sets, and other parsers, the results could vary, and we have no
evidence that the detailed observations made about our specific
experimental results would carry over to other contexts. Most
of this uncertainty is inherent to any empirical study in both
the learning and fuzzing research areas.

Specifically, we do not claim in this paper that any specific
combination/algorithm is best. Our empirical evidence looks
promising for the general RNN-based approach but is not
sufficient to single out any specific algorithm.

All the fuzzing algorithms compared in Figure 8 of Sec-
tion IV have a random component. To address randomness
and reproducibility, we present results after sampling 10,000
times.

We show cumulative coverage as usual in fuzzing/testing
experiments. We do not know what percentage of the total
PDF parser code is exercisable with our test setup (due to
the presence of dead code, error-handling code for operating
systems failures which is by design not exercisable in our test
setup, and library code like ntdll etc.). While incremental
coverage provided by the algorithms considered in Figure 8
is relatively small, some of the algorithms can actually cover
thousands of new instructions, i.e., significant chunks of new
code.

Note that the bug found mentioned in the previous section is
anecdotal. While promising, we mention it for full disclosure,
but we cannot draw any conclusion from it.

In contrast, we claim that our general observations about
the effect of random fuzzing on top of RNN generated inputs,
as well as the tension between coverage and pass rate will
remain valid. In particular, this paper is the first to observe
and provide clear experimental evidence of the general tension
between the conflicting goals of learning and fuzzing: learning
wants to maximize pass rate while fuzzing wants to maximize
coverage.

In other words, we view the main contribution of this paper
as a comprehensive discussion of how to combine learning
and fuzzing. In particular, our key general observation is
that learning for fuzzing requires generating both well-formed

inputs (high pass rate) as well as ill-formed ones (low pass
rate), in order to increase code coverage of both diverse parsing
code (sunny-day test scenarios) as well as error-handling code
(rainy-day test scenarios), and hence ultimately increase the
likelihood of finding parsing bugs.

The tension between well-formed and ill-formed inputs may
be unsurprising to fuzzing experts, but it is not well-known
in learning or ”learning for fuzzing” circles: this point is
omitted in all closely related work on learning for fuzzing
(see Section VII). Our paper is the first to identify, define and
measure this tension, which we claim is key in the context of
learning and fuzzing.

An important consequence of this observation is that better
learning does not imply better fuzzing. When comparing over-
all results, the training phase of machine-learning algorithms
has a cost (see Section III) that should be taken into account.
Fortunately, our paper provides evidence that precise (read
expensive) models are not required for fuzzing.

In Section III, we described a first char-rnn language model
with only 2 hidden layers for simplicity. Since this is the
first use of RNNs for fuzzing, we started by investigating
the simplest RNN-based algorithms. Other variants should be
explored in the future.

VII. RELATED WORK

Grammar-based fuzzing. Most popular blackbox random
fuzzers today support some form of grammar representation,
e.g., Peach1 and SPIKE2, among many others [30]. Work on
grammar-based test input generation started in the 1970’s [15],
[26] and is related to model-based testing [31]. Test generation
from a grammar is usually either random [21], [29], [6] or
exaustive [19]. Imperative generation [5], [8] is a related ap-
proach in which a custom-made program generates the inputs
(in effect, the program encodes the grammar). Grammar-based
fuzzing can also be combined with whitebox fuzzing [20],
[10].

Learning grammars for grammar-based fuzzing. Bastani
et al. [2] present an algorithm to synthesize a context-free
grammar given a set of input examples, which is then used
to generate new inputs for fuzzing. This algorithm uses a
set of generalization steps by introducing repetition and alter-
nation constructs for regular expressions, and merging non-
terminals for context-free grammars, which in turn results
in a monotonic generalization of the input language. This
technique is able to capture hierarchical properties of input
formats, but is not well suited for formats such as PDF
objects, which are relatively flat but include a large diverse
set of content types and key-value pairs. Instead, our approach
uses character-level neural-network language models to learn
statistical generative models of such flat formats. Moreover,
learning a statistical model also allows for guiding additional
fuzzing of the generated inputs.

1http://www.peachfuzzer.com/
2http://resources.infosecinstitute.com/fuzzer-automation-with-spike/

AUTOGRAM [17] also learns (non-probabilistic) context-
free grammars given a set of inputs but by dynamically observ-
ing how inputs are processed in a program. It instruments the
program under test with dynamic taints that tags memory with
input fragments they come from. The parts of the inputs that
are processed by the program become syntactic entities in the
grammar. Tupni [7] is another system that reverse engineers an
input format from examples using a taint tracking mechanism
that associate data structures with addresses in the application
address space. Unlike our approach that treats the program
under test as a black-box, AUTOGRAM and Tupni require
access to the program for adding instrumentation, are more
complex, and their applicability and precision for complex
formats such as PDF objects is unclear.

TreeFuzz [24] was recently proposed as a fuzz testing
approach for tree structured inputs (such as programs) by
learning a generative model of tree structures from a corpus
of example data. The key idea is to define a set of single-pass
models over tree structures to learn various properties of the
tree nodes, which are then trained using a corpus to learn a
generative model. The single-pass models define probabilistic
constraints such as root nodes, outgoing edges, parent and
ancestor relationships etc., which are important for learning
definition-use-like relations in programs. Unlike our approach
that uses neural networks to learn the generative model, the
constraints for single-pass models are learnt using a frequency
based approach, and moreover both the learning and inference
algorithms for each model are required to be defined manually.

Neural-networks-based program analysis. There has been
a lot of recent interest in using neural networks for program
analysis and synthesis [28]. Several neural architectures have
been proposed to learn simple algorithms such as array sorting
and copying [18], [27]. Neural FlashFill [23] and Robust-
Fill [9] use novel neural architectures for encoding input-
output examples and generating regular-expression-based pro-
grams in a domain specific language. Several neural network
based models have been developed for learning to repair
syntax errors in introductory programming assignments [3],
[14], [25]. SynFix [3] learns a seq2seq model over a set of
correct programs, and then use the learnt model to predict
syntax corrections for buggy programs. DeepFix [14] uses an
attention-based seq2seq model for learning a model from a
synthetic set of buggy programs obtained by injecting syntactic
bugs in a corpus of correct programs. It then uses the learnt
model to first predict the buggy line in the program and then
replaces the buggy line with the statement predicted by the
model. Sk p [25] uses a skip-gram neural network model to
predict a program statement using the lines before and after
the erroneous line. It enumerates all lines in the program
and their potential replacements until finding a program that
is correct. Other related work optimizes assembly programs
using neural representations [4]. In this paper, we present a
novel application of char-rnn models to learn grammars from
sample inputs for fuzzing purposes.

VIII. CONCLUSION AND FUTURE WORK

Grammar-based fuzzing is effective for fuzzing applications
with complex structured inputs provided a comprehensive in-
put grammar is available. This paper describes the first attempt
at using neural-network-based statistical learning techniques
to automatically generate input grammars from sample inputs.
We presented and evaluated algorithms that leverage recent
advances in sequence learning by neural networks, namely
character-level recurrent neural networks, to automatically
learn a generative model of PDF objects. We devised several
sampling techniques to generate new PDF objects from the
learnt distribution. We show that the learnt models are not only
able to generate a large set of new well-formed objects, but
also results in increased coverage of the PDF parser used in our
experiments, compared to various forms of random fuzzing.

While the results presented in Section IV may vary for
other applications, our general observations about the tension
between conflicting learning and fuzzing goals will remain
valid: learning wants to capture the structure of well-formed
inputs, while fuzzing wants to break that structure in order to
cover unexpected code paths and find bugs. We believe that
the inherent statistical nature of learning by neural networks
is a powerful tool to address this learn&fuzz challenge.

There are several interesting directions for future work.
While the focus of our paper was on learning the structure
of PDF objects, it would be worth exploring how to learn,
as automatically as possible, the higher-level hierarchical
structure of PDF documents involving cross-reference tables,
object bodies, and trailer sections that maintain certain com-
plex invariants amongst them. Perhaps some combination of
logical inference techniques with neural networks could be
powerful enough to achieve this. Also, our learning algo-
rithm is currently agnostic to the application under test. We
are considering using some form of reinforcement learning
to guide the learning of char-rnn models with coverage
feedback from the application, which could potentially guide
the learning more explicitly towards increasing coverage.

Acknowledgments. We thank Dustin Duran and Mark
Wodrich from the Microsoft Windows security team for their
Edge-PDF-parser test-driver and for helpful feedback. We also
thank Project Springfield, which partly funded this work. The
work of Hila Peleg was mostly done while visiting Microsoft
Research.

REFERENCES

[1] Adobe Systems Incorporated. PDF Reference, 6th edition, Nov.
2006. Available at http://www.adobe.com/content/dam/Adobe/en/devnet/
acrobat/pdfs/pdf reference 1-7.pdf.

[2] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesiz-
ing program input grammars. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 95–110. ACM, 2017.

[3] Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors
in programming assignments using recurrent neural networks. CoRR,
abs/1603.06129, 2016.

[4] Rudy R. Bunel, Alban Desmaison, Pawan Kumar Mudigonda, Pushmeet
Kohli, and Philip H. S. Torr. Adaptive neural compilation. In NIPS,
pages 1444–1452, 2016.

[5] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of ICFP’2000,
2000.

[6] D. Coppit and J. Lian. yagg: an easy-to-use generator for structured test
inputs. In ASE, 2005.

[7] Weidong Cui, Marcus Peinado, Karl Chen, Helen J Wang, and Luis
Irun-Briz. Tupni: Automatic reverse engineering of input formats. In
Proceedings of the 15th ACM conference on Computer and communi-
cations security, pages 391–402. ACM, 2008.

[8] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated
testing of refactoring engines. In FSE, 2007.

[9] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh,
Abdel-rahman Mohamed, and Pushmeet Kohli. Robustfill: Neural
program learning under noisy I/O. In ICML, pages 990–998, 2017.

[10] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based Whitebox
Fuzzing. In Proceedings of PLDI’2008 (ACM SIGPLAN 2008 Con-
ference on Programming Language Design and Implementation), pages
206–215, Tucson, June 2008.

[11] P. Godefroid, M.Y. Levin, and D. Molnar. Automated Whitebox Fuzz
Testing. In Proceedings of NDSS’2008 (Network and Distributed
Systems Security), pages 151–166, San Diego, February 2008.

[12] Alex Graves. Generating sequences with recurrent neural networks.
CoRR, abs/1308.0850, 2013.

[13] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition
with recurrent neural networks. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, pages 1764–1772, 2014.

[14] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:
Fixing common c language errors by deep learning. In AAAI, 2017.

[15] K.V. Hanford. Automatic Generation of Test Cases. IBM Systems
Journal, 9(4), 1970.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[17] Matthias Höschele and Andreas Zeller. Mining input grammars from
dynamic taints. In ASE, pages 720–725, 2016.

[18] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural
random-access machines. arXiv preprint arXiv:1511.06392, 2015.

[19] R. Lämmel and W. Schulte. Controllable combinatorial coverage in
grammar-based testing. In TestCom, 2006.

[20] R. Majumdar and R. Xu. Directed Test Generation using Symbolic
Grammars. In ASE, 2007.

[21] P.M. Maurer. Generating test data with enhanced context-free grammars.
IEEE Software, 7(4), 1990.

[22] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and
Sanjeev Khudanpur. Recurrent neural network based language model.
In INTERSPEECH, pages 1045–1048, 2010.

[23] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,
Dengyong Zhou, and Pushmeet Kohli. Neuro-symbolic program syn-
thesis. CoRR, abs/1611.01855, 2016.

[24] Jibesh Patra and Michael Pradel. Learning to fuzz: Application-
independent fuzz testing with probabilistic, generative models of input
data. Technical report, TU Darmstadt, November 2016.

[25] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina
Barzilay. sk p: a neural program corrector for moocs. CoRR,
abs/1607.02902, 2016.

[26] P. Purdom. A sentence generator for testing parsers. BIT Numerical
Mathematics, 12(3), 1972.

[27] Scott Reed and Nando de Freitas. Neural programmer-interpreters. arXiv
preprint arXiv:1511.06279, 2015.

[28] Rishabh Singh and Pushmeet Kohli. AP: artificial programming. In
SNAPL, 2017.

[29] E.G. Sirer and B.N. Bershad. Using production grammars in software
testing. In DSL, 1999.

[30] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[31] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-Based
Testing. Department of Computer Science, The University of Waikato,
New Zealand, Tech. Rep, 4, 2006.

