
Model Checking in Practice: An Analysis
of the ACCESS.bus Protocol using SPIN

Bernard Boigelot and Patrice Godefroid

Proceedings of Formal Methods Europe’96, Oxford, March 1996. Lecture Notes in Computer Science, vol.
1051, pages 465-478, Springer-Verlag.

Copyright Springer-Verlag Berlin Heidelberg 1996. This work is subject to copyright. All rights are
reserved, whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German
Copyright Law.

Model Checking in Practice: An Analysis of the

ACCESS.bus

TM

Protocol using SPIN

Bernard Boigelot

1?

and Patrice Godefroid

2??

1

Universit�e de Li�ege

Institut Monte�ore, B28

B-4000 Li�ege Sart-Tilman, Belgium

boigelot@montefiore.ulg.ac.be

2

AT&T Bell Laboratories

1000 E. Warrenville Road

Naperville, IL 60566, U.S.A.

god@research.att.com

Abstract. This paper presents a case study of the use of model checking

for analyzing an industrial protocol, the ACCESS.bus

TM

protocol. Our

analysis of this protocol was carried out using SPIN, an automated veri�-

cation system which includes an implementation of model-checking algo-

rithms. A model of the protocol was developed, and properties expressed

by linear-time temporal-logic formulas were checked on this model. This

analysis revealed subtle aws in the design of the protocol. Developers

who worked on implementations of ACCESS.bus

TM

were unaware of

these aws at a very late stage of their development process. We also

present suggestions for solving the detected problems.

1 Introduction

State-space exploration techniques are increasingly being used for debugging

and proving correct �nite-state concurrent reactive systems (cf. [Rud87, Liu89,

HK90, Hol91, DDHY92, FGM

+

92]). These techniques consist of exploring a

global state graph, called the state space, representing the combined behavior of

all concurrent components in the system. This is done by recursively exploring

all successor states of all states encountered during the exploration, starting from

a given initial state, by executing all enabled transitions in each state. Many dif-

ferent types of properties of a system can be checked by exploring its state space:

deadlocks, dead code, unspeci�ed receptions, bu�er overruns, etc. Moreover, the

range of properties that state-space exploration techniques can verify has been

substantially broadened during the last decade thanks to the development of

?

\Aspirant" (Research Assistant) for the National Fund for Scienti�c Research

(Belgium). The work of this author was done in part while visiting AT&T Bell

Laboratories.

??

This work was carried out in part while this author was with the University of Li�ege.

model-checking methods for various temporal logics (e.g., [CES86, LP85, QS81,

VW86]).

In this paper, we present an application of model checking for the analysis

of the ACCESS.bus

TM

protocol. The ACCESS.bus

TM

protocol is a serial com-

munication protocol aimed at providing a simple, uniform, and inexpensive way

to connect peripheral devices (such as keyboards, mice, modems, monitors, and

printers) to a host computer. It has been developed and standardized by an

industrial consortium of computer and peripheral manufacturers, referred to as

the ACCESS.bus

TM

Industry Group [ACC94]. At the time of this writing, im-

plementations of the ACCESS.bus

TM

protocol already exist, and are expected

to be commercialized soon.

Our analysis of the correctness of the ACCESS.bus

TM

protocol was performed

using the automated protocol veri�cation system SPIN [Hol91]. SPIN checks

properties of communication protocols, modeled in the Promela language, by

exploring their state space. Promela is a nondeterministic guarded-command

language for modeling systems of concurrent processes that can interact via

shared variables and message channels. Interaction via message channels can

be either synchronous (i.e., by rendez-vous) or asynchronous (bu�ered) with

arbitrary (user-speci�ed) bu�er capacities, and arbitrary numbers of message

parameters. Given a concurrent system modeled by a Promela program, SPIN

can check for deadlocks, dead code, violations of user-speci�ed assertions, and

temporal properties expressed by linear-time temporal-logic formulas. When a

violation of a property is detected, SPIN reports a scenario, i.e., a sequence of

transitions, violating this property.

Our analysis of the ACCESS.bus

TM

protocol pointed out several ambiguities

in the standardized document specifying the protocol. Moreover, it revealed sub-

tle and potentially harmful aws in the design of the protocol itself. Developers

who worked on implementations of ACCESS.bus

TM

were still unaware of these

aws at a very late stage of their development process.

This paper is organized as follows. In the next section, we present an overview

of the ACCESS.bus

TM

protocol. Next, we describe our model for this protocol,

and discuss our assumptions. In Section 4, we specify two basic properties that

the protocol has to satisfy. Then, we turn to the veri�cation of these properties.

For both of these properties, SPIN reported scenarios violating the property.

These scenarios are presented in Sections 5 and 6. By analyzing these scenarios,

causes of errors have been identi�ed, and suggestions for solving the detected

problems are presented.

2 ACCESS.bus

TM

Protocol

The ACCESS.bus

TM

protocol is a serial communication protocol. Its purpose is

to provide a simple, uniform and inexpensive way to connect peripheral devices

to a host computer. The analysis presented in this paper is based on release 2.2

of the protocol speci�cations [ACC94].

An important feature of ACCESS.bus

TM

is that it supports dynamic recon-

�guration, which means that devices can be connected to the bus while the

system is operating, and can become operational without the system being re-

booted. The overall structure of ACCESS.bus

TM

is illustrated in Figure 1. The

protocol is composed of a hardware layer based on the I

2

C protocol developed

by Philips, and of two software layers referred to as \Base Protocol" and \Device

Drivers". Device Drivers are controlled by user applications running on the host.

Device Drivers

Base Protocol

I

2

C (Hardware)

User applications

Fig. 1. Structure of ACCESS.bus

TM

.

The I

2

C protocol is a serial protocol that is used for interconnecting IC's

inside electronic appliances such as TV's and VCR's. It uses a bus composed of

two wires, serial data (SDA) and serial clock (SCL), which connects the host

and the devices together. Each component (i.e., device or host) has an 8-bit I

2

C

address which is not necessarily unique and may change over time. When a com-

ponent is plugged in, its address becomes the default I

2

C address. Information is

transmitted on the I

2

C bus by means of messages composed of an address part

and a data part. Since the bus is synchronous, there is no propagation delay. Any

I

2

C component may try to send a message at any time over the bus. Although a

same message can be sent simultaneously by several components, an arbitration

mechanism ensures that two di�erent messages are never sent at the same time.

This mechanism is deterministic: whenever two or more components attempt to

simultaneously send di�erent messages over the I

2

C layer, the conict is resolved

in favor of the same message. A transmitted message is received by a component

if and only if the address of the component matches the address part of the

message, and the component is not simultaneously transmitting the same mes-

sage over the bus. A message can thus be lost if its recipient is simultaneously

transmitting the same message, or if there is no recipient. Each time a message

is sent over the I

2

C layer, its sender receives a Positive Acknowledgment from

the I

2

C layer if the message is received by another component, and a Negative

Acknowledgment otherwise.

The Base Protocol aims at ensuring that every device will always be recog-

Message Types Purpose

Reset() Force a device to its power-up state and to the default

I

2

C address. This message is sent by the host on power-up

to all the I

2

C addresses. A device also sends this message

to its address right after being assigned a new address.

Attention() Inform the host that a device has �nished its power-

up/reset test and needs to be con�gured.

Identi�cationRequest() Ask a device for its identi�cation string, which is a se-

quence of bytes describing the hardware composing the

device. This message is issued by the host after reception

of an Attention message from a device.

Identi�cationReply(Id) Reply to Identi�cationRequest with the identi�cation

string Id of the device.

AssignAddress(Id, Addr) Ask all the devices with a matching identi�cation string

Id to turn their address into Addr.

PresenceCheck() Check if a device is present on the bus at a speci�c ad-

dress (speci�ed in the address part of the message). This

message is sent by the host at regular intervals of time in

order to detect new and missing devices.

CapabilitiesRequest(O�set) Ask a device to send a fragment (speci�ed byO�set) of its

capabilities string, which is a sequence of bytes describing

the functional characteristics of the device.

CapabilitiesReply(O�set, Data) Reply to CapabilitiesRequest with a fragment of the ca-

pabilities string of the device.

EnableApplicationReport() Enable or disable a device to send application reports,

that is, device-dependent functional information, to the

host.

ApplicationReport(Data) Send device-dependent functional information.

Fig. 2. Base Protocol Message Types.

nized by the host within a �nite amount of time after being plugged in, that it

will be assigned a unique I

2

C address, and that its Device Drivers will be able to

send and receive device-dependent functional data (such as mouse moves). The

Base Protocol de�nes a set of message types that can be sent over the I

2

C layer.

These message types are listed in Figure 2. When a device is plugged in, it sends

an Attention message to the host, which should reply with an Identi�cation-

Request message, which should itself be replied to with an Identi�cationReply

message from the device. Then, the host should send an AssignAddress message

containing a new I

2

C address for the device. When processing this message, the

device updates its address, and sends a Reset message to this address.

3 Design of the Model

Our analysis of ACCESS.bus

TM

focused on the power-up/reset and identi�cation

phases, that is, the part of the Base Protocol dealing with Reset, Attention, Iden-

ti�cationRequest, Identi�cationReply, AssignAddress and PresenceCheck mes-

sages. We made the following assumptions in order to resolve ambiguities in

the speci�cation document.

3

{ At the Base Protocol layer, every message received from the I

2

C layer is

stored in a bounded �fo bu�er while waiting to be processed. If the bu�er is

full, new incoming messages are lost.

{ The processing of a Reset message by a Base Protocol entity empties its

associated �fo bu�er.

Moreover, the following features of ACCESS.bus

TM

were not modeled:

{ the deterministic nature of the I

2

C arbitration mechanism,

{ the timing constraints de�ned in the speci�cation document, and

{ the possible corruption of messages sent over the I

2

C bus.

Consequently, if a message is sent over the I

2

C layer at the same time by one or

more components, it is always correctly received exactly once by every compo-

nent with a matching address that does not belong to the set of the senders.

The overall structure of the model is shown in Figure 3. Each component is

modeled by two processes: a microcontroller and an Upper Base Protocol (UBP).

The I

2

C bus is modeled by shared variables, since message broadcasting is not

a basic communication primitive in Promela. A set of semaphores is used to

control the access to the bus.

Each microcontroller continually listens to the bus, grabs messages destined

to its corresponding UBP, and appends them to a bounded �fo bu�er, which

is a basic Promela data type. Each UBP takes messages from its associated

�fo bu�er, and processes them according to the protocol rules (cf. Figure 2).

It can send messages directly (without queuing) over the I

2

C layer. Moreover,

it can nondeterministically switch between two modes, plugged and unplugged,

3

These assumptions match those made by the developers we had contacts with.

�controller

I

2

C

: �fo bu�er

: shared variables

�controller

...

... �controller

UBP UBP UBP

Device #1 Device #2 Host

Fig. 3. Structure of the model.

in order to simulate repeated pluggings and unpluggings of the corresponding

component.

Initially, all devices are assumed to be unplugged. To keep the state space

of the Promela model as small as possible, the maximum size of each �fo bu�er

was set to two elements, and the number of devices was limited to two. The

complete Promela model contains about 200 lines of code.

4 Properties

The speci�cation document [ACC94] does not contain a precise and complete de-

scription of the service provided by the Base Protocol to the Device Drivers. Two

basic properties that have to be satis�ed by the Base Protocol were extracted

from the document.

Property 1. A device d

i

is said to be operational when it has an I

2

C address

addr(d

i

) di�erent from the default I

2

C address, and it has sent a Reset

message to the address addr(d

i

). At any time, all devices that are operational

must have di�erent I

2

C addresses.

This property can be formalized by using linear-time propositional temporal

logic [MP92]. Linear-time temporal logic can be used for specifying properties

of in�nite sequences of states. Propositions in the logic correspond to boolean

conditions on variables and process states of the program. Formulas are con-

structed over propositions using the classical boolean connectives (:, _, : : :)

and the temporal operators 2 (always), 3 (eventually), and

(next). Formulas

are interpreted on in�nite sequences s

0

s

1

s

2

: : : of states: given a particular in�-

nite sequence of states, the formula is either satis�ed or falsi�ed by this sequence.

Informally, one has:

{ 2 p holds in state s

i

if p holds in s

i

and in all successor states of s

i

in the

sequence on which the formula is interpreted;

{ 3 p holds in s

i

if p holds in some successor state of s

i

or in s

i

itself;

{

p holds in s

i

if p holds in the next state of the sequence.

We refer the reader to [MP92, Eme90] for a detailed presentation of the syntax

and the semantics of linear-time temporal logic.

For a pair of devices d

1

and d

2

, Property 1 can be formalized by the following

linear-time temporal-logic formula:

2((oper(d

1

) ^ oper(d

2

))) (addr(d

1

) 6= addr(d

2

)));

where oper(d

i

) is true if device d

i

is operational, and (addr(d

1

) 6= addr(d

2

))

is true if devices d

1

and d

2

have di�erent I

2

C addresses () denotes logical

implication).

The second property of the Base Protocol we consider is the following.

Property 2. Whenever a device is plugged in, it will eventually become oper-

ational, provided that it remains plugged.

This property can be formalized by the following linear-time temporal-logic for-

mula:

2(plugged(d

1

)) 3(oper(d

1

) _ :plugged(d

1

)));

where plugged(d

1

) is true if device d

1

is plugged.

Given the �nite state space A

G

of a system and a linear-time temporal-

logic formula f , checking that all in�nite sequences of states de�ned by tran-

sitions in A

G

satisfy f is known as the model-checking problem. Various tech-

niques have been proposed for solving this problem [LP85, VW86, CVWY90,

GH93, GPVW95]. SPIN includes an implementation of the algorithms presented

in [GH93] and [GPVW95], which are based on a depth-�rst search in the state

space of the system (see [GH93] for details). When SPIN detects a sequence

of states that violates the property to be checked, it stops its search, and ex-

hibits this scenario (formed by all states and transitions currently stored in the

depth-�rst-search \stack") to the user.

Let us now turn to the results obtained by SPIN with the Promela model

described in the previous section and the two properties de�ned above.

5 Veri�cation of Property 1

5.1 First Flaw

After a few seconds of computation, SPIN detected that the �rst property was

not satis�ed.

Figure 4 depicts a �rst sequence of transitions leading to a state where two

devices are operational while having been assigned the same I

2

C address. In this

diagram, a thin vertical time line is associated with each plugged component.

Time increases from the top to the bottom of the time lines. The sending of a

Dev #1 Host Dev #2

Attention Attention

Ident. Request Ident. Request

Ident. Reply Ident. Reply

Reset Reset

Assign Address(a) Assign Address(a)

Fig. 4. First aw.

message through the I

2

C layer is represented by an horizontal arrow drawn from

the time line of the sender to the time line of the receiver. (Indeed, there is no

delay between the sending and the reception of a message.) The head and the

tail of the arrow correspond to the exact moment when the message starts to

be transmitted on the I

2

C bus. If a message is lost (i.e., is not received by any

component), the corresponding arrow does not reach any time line. A message

is lost when its recipient does not exist, when its recipient is sending the same

message over the bus, or when the �fo bu�er of the recipient is full. Thick vertical

lines represent the delay between the moment when the message is appended to

the input bu�er of its recipient and the moment when the message is actually

processed by its recipient.

In the scenario of Figure 4, two devices with the same identi�cation string

are plugged in at the same time. If both devices send and receive simultaneously

all the messages shown in Figure 4, it is impossible for the host to distinguish

them. Moreover, the self-addressed Reset message is not received by any device

if they both send this message at the same time.

This problem is a direct consequence of the properties of I

2

C, and is not

surprising. However, it is worth noticing that having two devices sending the

same message at exactly the same time is not an unlikely event. Two devices

that wait for sending a message will synchronize on the message frame currently

being transmitted on the I

2

C bus, and will both start trying to transmit their

message at the exact end of this frame.

5.2 Second Flaw

A more complex sequence of events violating Property 1 is given in Figure 5. As

in the previous scenario, two devices are plugged in and have the same identi�ca-

tion string. The �rst device �nishes its internal initialization process, and sends

an Attention to the host at time t

0

. At time t

1

, the host assigns the address a to

this device by sending an AssignAddress message, which is stored in the input

t

1

t

2

t

3

t

4

Dev #1 Host Dev #2

t

0

Attention

Ident. Request

Ident. Reply

Attention

Ident. Request

Ident. Reply

Reset Reset

Reset

Assign Address(b)

Assign Address(a)

Assign Address(b)

Fig. 5. Second aw.

�fo bu�er of the device. Then the second device sends an Attention to the host,

and enters its identi�cation phase. When the host assigns the address b to the

second device at time t

2

, the AssignAddress message is also received by the �rst

device, since its address is still the default address at that time, because the

request to change its address to a is still waiting in its bu�er and has not been

processed yet. When the �rst device �nally processes its incoming messages, it

changes its address to a at time t

3

, sends a self addressed Reset, and sets its

address to b at time t

4

. The self addressed Reset messages are then sent simulta-

neously by both devices, and are thus lost, allowing the two devices to become

operational with the same address b.

This scenario reveals another problem in the protocol: here, the erroneous

situation results not only from losing two Reset messages, but also from delaying

an AssignAddress in a �fo bu�er.

5.3 Third Flaw

When observing the �rst two aws, one could wonder if Property 1 is violated

only when two devices may share the same identi�cation string. SPIN can easily

show that this is not the case. A scenario resulting in the assignment of the same

t

0

t

1

Attention

Dev #1 Host Dev #2

Ident. Request

Ident. Reply

Assign Address(a)

Attention

Ident. Request

Ident. Reply

Pres. Check

Assign Address(a)

Reset Reset

t

2

t

3

Fig. 6. Third aw.

address to two devices with di�erent identi�cation strings is given in Figure 6.

As in the previous scenario, the �rst device starts its identi�cation phase at time

t

0

, and the processing of the AssignAddress message received from the host at

time t

1

is delayed until time t

2

. In the meantime, the second device sends an

Attention to the host, and proceeds with its identi�cation phase. On reception of

an Identi�cationReply from the second device, the host issues a PresenceCheck

aimed at checking if the �rst device is still plugged. The �rst device does not

receive this PresenceCheck message, since it is still using the default bus address.

Therefore, the host receives a Negative Acknowledgment from the I

2

C layer. It

concludes that the �rst device is not present anymore, and that address a is

available. It then assigns address a to the second device at time t

3

. Again, if the

self-addressed Reset messages are sent simultaneously by the two devices, they

are lost, and both devices become operational with the same address a, thus

violating the �rst property.

5.4 Suggestions

The three scenarios presented in Figures 4, 5, and 6 reveal the existence of three

causes of errors for Property 1 in the Base Protocol:

{ a Reset message is lost,

{ two devices share the same identi�cation number, and

{ the processing of an AssignAddress is delayed.

For eliminating these causes of errors, we suggest the following modi�cations

to the Base Protocol.

In order to avoid losing Reset messages, these messages should not be ap-

pended to the input bu�ers of their recipients, but should rather be processed

immediately upon reception, for instance by issuing hardware interrupts to no-

tify immediately the corresponding UBP of the arrival of such a message. In

such a way, Reset messages will not be lost when the input bu�ers of their re-

cipients are full. Moreover, the loss of a Reset message due to the fact that it is

simultaneously sent by two (or more) components can be avoided by adding a

unique �rmware number of the sender to each Reset message frame. If this radi-

cal solution is too expensive to be implemented, adding a random number (e.g.,

the value of an internal clock) to each Reset message frame will strongly reduce

the probability of losing a Reset message because of simultaneous transmissions

of it. This probability can be further reduced by waiting for a random amount

of time before trying to send a Reset message.

Concerning the second cause, preventing identical identi�cation strings can

be done by using a unique �rmware number in the identi�cation string of each

device.

Finally, the problems resulting from delaying an AssignAddress message can

be avoided by the two following modi�cations. First, AssignAddress messages

should be processed immediately upon reception, for instance by using hard-

ware interrupts as indicated above. Second, whenever a component receives an

AssignAddress message requesting a modi�cation of its current I

2

C address, its

�fo bu�er should be emptied.

Once we have modi�ed our Promela model by following the above sugges-

tions, SPIN proved in about 30 minutes of computation on a SPARC20 worksta-

tion with 256 Megabytes of RAM that Property 1 was satis�ed by all possible

executions of the model. Note that the correctness proof of our model does not

guarantee that the modi�cations suggested above are su�cient for avoiding the

reported problems in practice.

It is worth noticing that the timing constraints de�ned in the speci�cation

document do not prevent any of the three scenarios discussed in this section

from occurring. Indeed, each of these scenarios can easily be annotated with

timestamps satisfying these timing constraints.

6 Veri�cation of Property 2

6.1 Fourth Flaw

SPIN quickly found scenarios violating Property 2 as well. Indeed, two or more

devices can hold the I

2

C bus for an unbounded amount of time, and thus prevent

other components from sending messages. The timing constraints described in

the protocol speci�cation help to prevent such situations, but it is easy to show

that these constraints are not su�cient to completely solve the problem. More-

over, the deterministic nature of the I

2

C arbitration mechanism (which we did

not model) does not help to solve this problem. Indeed, if two devices alterna-

tively send ApplicationReport messages over the bus, it can be deduced from the

arbitration rules that, if their addresses have high-priority values (i.e., 02 and

03), it is impossible for a third device with an address of lower priority (i.e., FE)

to be granted the bus at any time. In this scenario, the third device will never

be able to send an Attention message to the host to signal its presence in the

system, and hence will never become operational.

6.2 Suggestions

The probability of occurrence of such scenarios can be reduced by modifying the

structure of the message frames in order to give a higher priority to protocol

messages, as opposed to application reports, with respect to the I

2

C arbitration

mechanism. One could use for this purpose the least signi�cant bit of the �rst

byte of the frame (0 for protocol message frames, 1 for application reports). The

protocol speci�cation also includes an optional Device Bandwidth Management

system, which could help avoiding the problem.

7 Conclusions

We have presented the main stages and the results of an analysis of an in-

dustrial protocol, the ACCESS.bus

TM

protocol. The analysis of this protocol

was performed using SPIN, an automated protocol veri�cation system including

state-space exploration and model-checking algorithms. Our analysis revealed

subtle aws in the design of this protocol, which were not found by simulating

or testing the existing prototype implementations. We have also presented sug-

gestions for solving the detected problems. During this work, SPIN repeatedly

proved to be a powerful and e�cient veri�cation tool.

Model checking is an e�ective and simple method for verifying that a con-

current reactive system satis�es a temporal logic formula. It makes it possible to

reason about programs without having the burden of carrying out correctness

proofs by hand. Indeed, model checking is fully automatic: no intervention of

the user is required. This is a crucial feature for a veri�cation technique to be

used in industry, since products are often (read always) developed under time

pressure, and therefore veri�cation steps that would be too time consuming are

likely to be skipped.

Although model checking is fully automatic, applying model checking for

the analysis of communication protocols is not yet a systematic activity. The

ability of quickly modeling a system at the \right" level of abstraction requires

training, experience, and some knowledge of how model-checkers work: oversim-

plifying the model of the system should be avoided in order to be able to detect

potential problems in the actual system, while abstracting enough irrelevant de-

tails is needed in order to keep automatic veri�cation computationally tractable.

Moreover, ingenuity and tenacity are often necessary for expressing interesting

properties (i.e., those that might reveal signi�cant errors) and for �ltering er-

ror traces when looking for plausible scenarios (i.e, those that may occur in a

realistic environment). In summary, veri�cation is and remains a discipline in

itself, even with the help of powerful veri�cation tools such as model-checkers.

Therefore, we believe that the most promising and pragmatic way for introduc-

ing formal veri�cation in existing development processes is by forming groups of

\validation engineers" who are specially trained for this task.

Another analysis of the Base Protocol can be found in [Hoo95]. It was carried

out by using an assertional method with the help of the interactive proof checker

included in the veri�cation system PVS [ORS92]. Hooman proved manually that

the Base Protocol satis�es Property 1 and 2 provided that all the devices have a

di�erent identi�cation string, that messages between base-protocol components

are not bu�ered, and that whenever a component wants to transmit a message

over the I

2

C layer, this message is transmitted within a bounded amount of

time. If one of these (strong) assumptions is not satis�ed, no information about

the correctness of the protocol is provided. In contrast, our analysis was based

on a more detailed model, i.e., on weaker assumptions, and produced counter-

examples violating Property 1 and 2. This enabled us to precisely identify the

causes of these errors, and to suggest implementable solutions for these problems.

Finally, all counter-examples mentioned above and the proof of correctness of

our modi�ed model were produced automatically by SPIN.

8 Acknowledgments

We wish to thank Didier Pirottin, who contributed to the results presented in this

paper. We are also grateful to Ron Koymans (Philips Research) for challenging

us to analyze the ACCESS.bus

TM

protocol and for fruitful discussions, and to

Mark Staskauskas for helpful comments on a preliminary version of this paper.

References

[ACC94] ACCESS.bus Industry Group. Access.bus speci�cations, version 2.2. 370

Altair Way, Suite 215, Sunnyvale, California 94086, USA, 1994.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of

�nite-state concurrent systems using temporal logic speci�cations. ACM

Transactions on Programming Languages and Systems, 8(2):244{263, Jan-

uary 1986.

[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory e�-

cient algorithms for the veri�cation of temporal properties. In Proc. 2nd

Workshop on Computer Aided Veri�cation, volume 531 of Lecture Notes in

Computer Science, pages 233{242, Rutgers, June 1990.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�ca-

tion as a hardware design aid. In 1992 IEEE International Conference

on Computer Design: VLSI in Computers and Processors, pages 522{525,

Cambridge, MA, October 1992. IEEE Computer Society.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science. Elsevier/MIT Press, Amster-

dam/Cambridge, 1990.

[FGM

+

92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and

J. Sifakis. A toolbox for the veri�cation of LOTOS programs. In Proc.

of the 14th International Conference on Software Engineering ICSE'14,

Melbourne, Australia, May 1992. ACM.

[GH93] P. Godefroid and G. J. Holzmann. On the veri�cation of temporal prop-

erties. In Proc. 13th IFIP WG 6.1 International Symposium on Protocol

Speci�cation, Testing, and Veri�cation, pages 109{124, Li�ege, May 1993.

North-Holland.

[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-y automatic

veri�cation of linear temporal logic. In Protocol Speci�cation Testing and

Veri�cation, pages 3{18, Warsaw, Poland, 1995. Chapman & Hall.

[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of com-

munication protocols. AT&T Technical Journal, 1990.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall, 1991.

[Hoo95] J. Hooman. Verifying part of the ACCESS.bus protocol using PVS. To

appear in the Proceedings of Foundations of Software Technology and The-

oretical Computer Science, December 1995.

[Liu89] M.T. Liu. Protocol engineering. Advances in Computing, 29:79{195, 1989.

[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent pro-

grams satisfy their linear speci�cation. In Proceedings of the Twelfth ACM

Symposium on Principles of Programming Languages, pages 97{107, New

Orleans, January 1985.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Speci�cation. Springer-Verlag, 1992.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype veri�cation system.

In Proc. 11th Conference on Automated Deduction, volume 607 of Lecture

Notes in Arti�cial Intelligence, pages 748{752. Springer-Verlag, 1992.

[QS81] J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent sys-

tems in CESAR. In Proc. 5th Int'l Symp. on Programming, volume 137 of

Lecture Notes in Computer Science, pages 337{351. Springer-Verlag, 1981.

[Rud87] H. Rudin. Network protocols and tools to help produce them. Annual

Review of Computer Science, 2:291{316, 1987.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program veri�cation. In Proceedings of the First Symposium on Logic in

Computer Science, pages 322{331, Cambridge, June 1986.

This article was processed using the L

a

T

E

X macro package with LLNCS style

