500 Machine-Years of Software Model Checking
and SMT Solving

Patrice Godefroid

Microsoft Research, pg@microsoft.com

Abstract. I will report on our experience running SAGE for over 500-
machine years in Microsoft’s security testing labs. SAGE is a whitebox
fuzzing tool for security testing. It performs symbolic execution dynami-
cally at the binary (x86) level, generates constraints on program inputs,
and solves those constraints with an SMT solver in order to generate new
inputs to exercise new program paths or trigger security vulnerabilities
(like buffer overflows). This process is repeated using novel state-space
exploration techniques that attempt to sweep through all (in practice,
many) feasible execution paths of the program while checking simulta-
neously many properties. This approach thus combines program analy-
sis, testing, model checking and automated theorem proving (constraint
solving).

Since 2009, SAGE has been running 24/7 on average 100+ machines au-
tomatically “fuzzing” hundreds of applications. This is the largest com-
putational usage ever for any SMT solver, with over 4 billion constraints
processed to date. In the process, SAGE found many new security vul-
nerabilities (missed by blackbox fuzzing and static program analysis) and
was credited to have found roughly one third of all the bugs discovered
by file fuzzing during the development of Microsoft’s Windows 7, sav-
ing millions of dollars by avoiding expensive security patches to nearly a
billion PCs.

In this talk, I will present the SAGE project, highlight connections with
program verification, and discuss open research challenges.

This is joint work with Michael Levin, David Molnar, Ella Bounimova,
and other contributors.



