
Random Testing for Security:
Blackbox vs. Whitebox Fuzzing

Invited Talk

Patrice Godefroid

Microsoft Research
pg@microsoft.com

ABSTRACT
Fuzz testing is an effective technique for finding security vul-
nerabilities in software. Fuzz testing is a form of blackbox
random testing which randomly mutates well-formed inputs
and tests the program on the resulting data. In some cases,
grammars are used to randomly generate the well-formed
inputs. This also allows the tester to encode application-
specific knowledge (such as corner cases of particular inter-
est) as part of the grammar, and to specify test heuristics
by assigning probabilistic weights to production rules. Al-
though fuzz testing can be remarkably effective, the lim-
itations of blackbox random testing are well-known. For
instance, the then branch of the conditional statement “if
(x==10) then”has only one in 232 chances of being exercised
if x is a randomly chosen 32-bit input value. This intuitively
explains why random testing usually provides low code cov-
erage.

Recently, we have proposed an alternative approach of
whitebox fuzz testing [4], building upon recent advances in
dynamic symbolic execution and test generation [2]. Start-
ing with a well-formed input, our approach symbolically
executes the program dynamically and gathers constraints
on inputs from conditional statements encountered along
the way. The collected constraints are then systematically
negated and solved with a constraint solver, yielding new in-
puts that exercise different execution paths in the program.
This process is repeated using a novel search algorithm with
a coverage-maximizing heuristic designed to find defects as
fast as possible in large search spaces. For example, sym-
bolic execution of the above code fragment on the input x

= 0 generates the constraint x 6= 10. Once this constraint is
negated and solved, it yields x = 10, which gives us a new
input that causes the program to follow the then branch of
the given conditional statement.

We have implemented this approach in SAGE (Scalable,
Automated, Guided Execution), a tool based on x86 instruction-
level tracing and emulation for whitebox fuzzing of file-reading

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RT ’07, November 6, 2007, Atlanta, GA, USA
Copyright 2007 ACM 978-1-59593-881-7/07/11 ...$5.00.

Windows applications. While still in an early stage of de-
velopment and deployment, SAGE has already discovered
more than 30 new bugs in large shipped Windows appli-
cations including image processors, media players and file
decoders. Several of these bugs are potentially exploitable
memory access violations.

In this talk, I will briefly review blackbox fuzzing for se-
curity testing. Then, I will present an overview of our re-
cent work on whitebox fuzzing [4] (joint work with Michael
Y. Levin and David Molnar), with an emphasis on the key
algorithms and techniques needed to make this approach ef-
fective and scalable (see also [1, 3]).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Verification, Algorithms, Reliability

Keywords
Software Testing, Automatic Test Generation, Program Ver-
ification, Security

1. REFERENCES
[1] P. Godefroid. Compositional Dynamic Test Generation.

In Proceedings of POPL’2007 (34th ACM Symposium
on Principles of Programming Languages), pages 47–54,
Nice, January 2007.

[2] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In Proceedings of
PLDI’2005 (ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation),
pages 213–223, Chicago, June 2005.

[3] P. Godefroid, M.Y. Levin, and D. Molnar. Active
Property Checking. Technical Report MS-TR-2007-91,
Microsoft, July 2007. See
http://research.microsoft.com/users/pg/.

[4] P. Godefroid, M.Y. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. Technical Report
MS-TR-2007-58, Microsoft, May 2007. See
http://research.microsoft.com/users/pg/.

